Назад
Задача

Двое пишут  а) 30-значное;  б) 20-значное число, употребляя только цифры 1, 2, 3, 4, 5. Первую цифру пишет первый, вторую – второй, третью – первый и т. д. Может ли второй добиться того, чтобы полученное число разделилось на 9, если первый стремится ему помешать?

Решение

а) Стратегия второго: писать цифру так, чтобы сумма её с предыдущей цифрой равнялась 6. Поскольку 15·6 делится на 9, то полученное 30-значное число будет делиться на 9. б) Стратегия первого: сначала нужно написать 1, а потом писать цифру так, чтобы сумма её с предыдущей равнялась 6. В этом случае перед последним ходом второго игрока сумма цифр будет равна 55, и он не сможет добиться своей цели.

Ответ

а) Может;  б) не может.

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет