Олимпиадные задачи по теме «Методы» для 7-10 класса - сложность 2 с решениями
Методы
Все категорииМожно ли нарисовать 1006 различных 2012-угольников, у которых все вершины общие, но при этом ни у каких двух нет ни одной общей стороны?
В пять горшочков, стоящих в ряд, Кролик налил три килограмма мёда (не обязательно в каждый и не обязательно поровну). Винни-Пух может взять любые два горшочка, стоящие рядом. Какое наибольшее количество мёда сможет гарантированно съесть Винни-Пух?
Можно ли в записи 2013² – 2012² – ... – 2² – 1² некоторые минусы заменить на плюсы так, чтобы значение получившегося выражения стало равно 2013?
На рисунке приведены три примера показаний исправных электронных часов. Сколько палочек могут перестать работать, чтобы время всегда можно было определить однозначно? <div align="center"><img src="/storage/problem-media/117005/problem_117005_img_2.gif"></div>
Два фокусника показывают зрителю такой фокус. У зрителя есть 24 карточки, пронумерованные числами от 1 до 24. Он выбирает из них 13 карточек и передаёт первому фокуснику. Тот возвращает зрителю две из них. Зритель добавляет к этим двум одну из оставшихся у него 11 карточек и, перемешав, передаёт эти три карточки второму фокуснику. Каким образом фокусники могут договориться так, чтобы второй всегда с гарантией мог определить, какую из трёх карточек добавил зритель?
Астролог считает, что 2013 год <i>счастливый</i>, потому что 2013 нацело делится на сумму 20 + 13.
Будет ли когда-нибудь два счастливых года подряд?
Куб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?
На поверхности куба проведена замкнутая восьмизвенная ломаная, вершины которой совпадают с вершинами куба.
Какое наименьшее количество звеньев этой ломаной может совпасть с рёбрами куба?
Убирая детскую комнату к приходу гостей, мама нашла девять носков. Среди каждых четырёх из этих носков хотя бы два принадлежали одному ребёнку, а среди каждых пяти не более трёх имели одного хозяина. Сколько могло быть детей и сколько носков могло принадлежать каждому ребёнку?
В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:
а) за 5 или менее;
б) за 4 или менее;
в) за 3 или менее таких перегибания?<div align="center"><img src="/storage/problem-media/116962/problem_116962_img_2.gif"></div>
Малый и Большой острова имеют прямоугольную форму и разделены на прямоугольные графства. В каждом графстве проложена дорога по одной из диагоналей. На каждом острове эти дороги образуют замкнутый путь, который ни через какую точку не проходит дважды. Вот как устроен Малый остров, где всего шесть графств (см. рис.). <div align="center"><img src="/storage/problem-media/116959/problem_116959_img_2.gif"></div>Нарисуйте, как может быть устроен Большой остров, если на нём нечётное число графств. Сколько графств у вас получилось?
Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?
Можно ли разбить клетчатую доску 12×12 на уголки из трёх соседних клеток так, чтобы каждый горизонтальный и каждый вертикальный ряд клеток доски пересекал одно и то же количество уголков? (Ряд пересекает уголок, если содержит хотя бы одну его клетку.)
Петя расставляет в вершинах куба числа 1 и –1. Андрей вычисляет произведение четырёх чисел, стоящих в вершинах каждой грани куба, и записывает его в центре этой грани. Петя утверждает, что он сможет так расставить числа, что их сумма и сумма чисел, записанных Андреем, будут противоположными. Прав ли Петя?
При каких <i>n</i> можно оклеить в один слой поверхность клетчатого куба <i>n</i>×<i>n</i>×<i>n</i> бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?
Существует ли такие выпуклый четырёхугольник и точка <i>P</i> внутри него, что сумма расстояний от <i>P</i> до вершин больше периметра четырёхугольника?
Изобразите на координатной плоскости множество всех точек, координаты <i>x</i> и <i>у</i> которых удовлетворяют неравенству <img align="absmiddle" src="/storage/problem-media/116892/problem_116892_img_2.gif"> .
На шахматную доску поставлены 11 коней так, что никакие два не бьют друг друга.
Докажите, что на ту же доску можно поставить ещё одного коня с сохранением этого свойства.
Найдите наибольшее значение выражения <i>x</i>² + <i>y</i>², если |<i>x – y</i>| ≤ 2 и |3<i>x + y</i>| ≤ 6.
В десятичной записи некоторого числа цифры расположены слева направо в порядке убывания. Может ли это число быть кратным числу 111?
Туристическая фирма провела акцию: "Купи путевку в Египет, приведи четырёх друзей, которые также купят путевку, и получи стоимость путевки обратно". За время действия акции 13 покупателей пришли сами, остальных привели друзья. Некоторые из них привели ровно по четыре новых клиента, а остальные 100 не привели никого. Сколько туристов отправились в Страну Пирамид бесплатно?
Вася придумал новую шахматную фигуру "супер-слон". Один "супер-слон" (обозначим его <i>A</i>) бьёт другого (обозначим его <i>B</i>), если они стоят на одной диагонали, между ними нет фигур, и следующая по диагонали клетка за "супер-слоном" <i>B</i> свободна. Например, на рисунке фигура <i>a</i> бьёт фигуру <i>b</i>, но не бьёт ни одну из фигур <i>c, d, e, f</i> и <i>g</i>. <div align="center"><img src="/storage/problem-media/116871/problem_116871_img_2.gif"></div>Какое наибольшее количество "супер-слонов" можно поставить на шахматную доску так, чтобы каждый из них бился хотя бы одним другим?
Расставьте в кружках, расположенных в вершинах квадрата и в его центре, пять натуральных чисел так, чтобы каждые два числа, соединенные отрезком, имели общий делитель, больший 1, а любые два числа, не соединенные отрезком, были бы взаимно просты. <div align="center"><img src="/storage/problem-media/116868/problem_116868_img_2.gif"></div>
Десять футбольных команд сыграли каждая с каждой по одному разу. В результате у каждой команды оказалось ровно по <i>х</i> очков.
Каково наибольшее возможное значение <i>х</i>? (Победа – 3 очка, ничья – 1 очко, поражение – 0.)
Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке?<div align="center"><img src="/storage/problem-media/116854/problem_116854_img_2.gif"></div>