Олимпиадные задачи по теме «Примеры и контрпримеры. Конструкции» для 9 класса - сложность 4 с решениями
Примеры и контрпримеры. Конструкции
НазадВ клетках таблицы <i>m</i>×<i>n</i> расставлены числа. Оказалось, что в каждой клетке записано количество соседних с ней по стороне клеток, в которых стоит единица. При этом не все числа – нули. При каких числах <i>m</i> и <i>n</i>, больших 100, такое возможно?
На плоскости расположен круг. Какое наименьшее количество прямых надо провести, чтобы, симметрично отражая данный круг относительно этих прямых (в любом порядке конечное количество раз), можно было накрыть им любую заданную точку плоскости?
Дано конечное множество простых чисел <i>P</i>. Докажите, что найдётся такое натуральное число <i>x</i> , что оно представляется в виде <i>x = a<sup>p</sup> + b<sup>p</sup></i> (с натуральными <i>a, b</i>) при всех <i>p</i> ∈ <i>P </i> и не представляется в таком виде для любого простого <i>p</i> ∉ <i>P</i>.
В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
в) Могут ли длины отрезков равняться 4, 4 и 3?
а) Многоугольник обладает следующим свойством: если провести прямую через любые две точки, делящие его периметр пополам, то эта прямая разделит многоугольник на два равновеликих многоугольника. Верно ли, что многоугольник центрально симметричен? б) Верно ли, что любая фигура, обладающая свойством, указанным в п.а), центрально симметрична?
Нарисуйте многоугольник и точку на его границе так, что любая прямая, проходящая через эту точку, делит площадь этого многоугольника пополам.
На выборах в городскую Думу каждый избиратель, если он приходит на выборы, отдает голос за себя (если он является кандидатом) и за тех кандидатов, которые являются его друзьями. Прогноз социологической службы мэрии считается хорошим, если в нем правильно предсказано количество голосов, поданных хотя бы за одного из кандидатов, и нехорошим в противном случае. Докажите, что при любом прогнозе избиратели могут так явиться на выборы, что этот прогноз окажется нехорошим.
Натуральные числа от 1 до 100 расставлены по кругу в таком порядке, что каждое число либо больше обоих соседей, либо меньше обоих соседей. Пара соседних чисел называется <i>хорошей</i>, если при выкидывании этой пары вышеописанное свойство сохраняется. Какое минимальное количество хороших пар может быть?
Существует ли такое натуральное число <i>n</i> > 10<sup>1000</sup>, не делящееся на 10, что в его десятичной записи можно переставить две различные ненулевые цифры так, чтобы множество его простых делителей не изменилось?
Найдите наибольшее натуральное число <i>N</i>, для которого при произвольной расстановке различных натуральных чисел от 1 до 400 в клетках квадратной таблицы 20×20 найдутся два числа, стоящих в одной строке или одном столбце, разность которых будет не меньше <i>N</i>.
Участникам тестовой олимпиады было предложено <i>n</i> вопросов. Жюри определяет сложность каждого из вопросов: целое положительное количество баллов, получаемых участниками за правильный ответ на вопрос. За неправильный ответ начисляется 0 баллов, все набранные участником баллы суммируются. Когда все участники сдали листки со своими ответами, оказалось, что жюри так может определить сложность вопросов, чтобы места между участниками распределились любым наперед заданным образом. При каком наибольшем числе участников это могло быть?
Пусть 2<i>S</i> – суммарный вес некоторого набора гирек. Назовём натуральное число <i>k средним</i>, если в наборе можно выбрать <i>k</i> гирек, суммарный вес которых равен <i>S</i>. Какое наибольшее количество средних чисел может иметь набор из 100 гирек?
Ювелир сделал незамкнутую цепочку из<i> N></i>3пронумерованных звеньев. Капризная заказчица потребовала изменить порядок звеньев в цепочке. Из вредности она заказала такую незамкнутую цепочку, чтобы ювелиру пришлось раскрыть как можно больше звеньев. Сколько звеньев придется раскрыть?
Обозначим<i> S</i>(<i>x</i>)сумму цифр числа<i> x </i>. Найдутся ли три таких натуральных числа<i> a </i>,<i> b </i>и<i> c </i>, что<i> S</i>(<i>a+b</i>)<i><</i>5,<i> S</i>(<i>a+c</i>)<i><</i>5и<i> S</i>(<i>b+c</i>)<i><</i>5, но<i> S</i>(<i>a+b+c</i>)<i>></i>50?
Существуют ли 1998 различных натуральных чисел, произведение каждых двух из которых делится нацело на квадрат их разности?
В клетках таблицы 10×10 расставлены числа 1, 2, 3, ..., 100 так, что сумма любых двух соседних чисел не превосходит <i>S</i>.
Найдите наименьшее возможное значение <i>S</i>. (Числа называются соседними, если они стоят в клетках, имеющих общую сторону.)
Знайка пишет на доске 10 чисел, потом Незнайка дописывает ещё 10 чисел, причём все 20 чисел должны быть положительными и различными. Мог ли Знайка написать такие числа, чтобы потом гарантированно суметь составить 10 квадратных трёхчленов вида <i>x</i>² + <i>px + q</i>, среди коэффициентов <i>p</i> и <i>q</i> которых встречались бы все записанные числа, и (действительные) корни этих трёхчленов принимали ровно 11 различных значений?
Существует ли последовательность натуральных чисел, в которой каждое натуральное число встречается ровно один раз и при этом для любого <i>k</i> = 1, 2, 3, ... сумма первых <i>k</i> членов последовательности делится на <i>k</i>?
Докажите, что для любого натурального числа <i>a</i><sub>1</sub> > 1 существует такая возрастающая последовательность натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ...,
что <img align="absmiddle" src="/storage/problem-media/109599/problem_109599_img_2.gif"> делится на <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + ... + <i>a<sub>k</sub></i> при всех <i>k</i> ≥ 1.
Можно ли раскрасить все точки квадрата и круга в чёрный и белый цвета так, чтобы множества белых точек этих фигур были подобны друг другу и множества чёрных точек также были подобны друг другу (возможно, с различными коэффициентами подобия)?
В круговом шахматном турнире каждый участник сыграл с каждым из остальных один раз. Назовём партию <i>неправильной</i>, если выигравший её шахматист в итоге набрал очков меньше чем проигравший. (Победа даёт 1 очко, ничья – ½, поражение – 0.) Могут ли неправильные партии составлять
а) более 75% от общего количества партий в турнире;
б) более 70%?
У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?
В круговом шахматном турнире каждый участник играет с каждым из остальных один раз. За выигрыш присуждается одно очко, за ничью – пол-очка, за проигрыш – ноль. Назовём партию <i>неправильной</i>, если выигравший её шахматист в итоге набрал очков меньше проигравшего.
а) Докажите, что неправильные партии составляют меньше ¾ общего числа партий в турнире.
б) Докажите, что в пункте а) число ¾ нельзя заменить на меньшее.
Каждая сторона правильного треугольника разбита на <i>n</i> равных отрезков, и через все точки деления проведены прямые, параллельные сторонам. Данный треугольник разбился на <i>n</i>² маленьких треугольников-клеток. Треугольники, расположенные между двумя соседними параллельными прямыми, образуют полоску.
а) Какое наибольшее число клеток можно отметить, чтобы никакие две отмеченные клетки не принадлежали одной полоске ни по одному из трёх направлений, если <i>n</i> = 10?
б) Тот же вопрос для <i>n</i> = 9.
В некотором государстве человек может быть зачислен в полицию только в том случае, если он выше ростом чем 80% (или больше) его соседей. Чтобы доказать свое право на зачисление в полицию, человек сам называет число <i>R</i> (радиус), после чего его "соседями" считаются все, кто живёт на расстоянии меньше <i>R</i> от него (число соседей, разумеется, должно быть не нулевое). В этом же государстве человек освобождается от службы в армии только в том случае, если он ниже ростом, чем 80% (или больше) его соседей. Определение "соседей" аналогично; человек сам называет число <i>r</i> (радиус) и т. д., причём <i>R</i> и <i>r</i> не обязательно совпадают. Может ли случиться, что не менее 90% населения имеют право на зач...