Олимпиадные задачи по теме «Примеры и контрпримеры. Конструкции» для 9 класса - сложность 3-4 с решениями

Существуют ли 2013 таких различных натуральных чисел, что сумма каждых двух из них делится на их разность?

Фигура <i>мамонт</i> бьёт как слон (по диагоналям), но только в трёх направлениях из четырёх (отсутствующее направление может быть разным для разных мамонтов). Какое наибольшее число не бьющих друг друга мамонтов можно расставить на шахматной доске 8×8?

На окружности длины 2013 отмечены 2013 точек, делящих её на равные дуги. В каждой отмеченной точке стоит фишка. Назовём <i> расстоянием</i> между двумя точками длину меньшей дуги между ними. При каком наибольшем <i>n</i> можно переставить фишки так, чтобы снова в каждой отмеченной точке было по фишке, а расстояние между любыми двумя фишками, изначально удалёнными не более чем на <i>n</i>, увеличилось?

В клетках доски 8×8 расставлены числа 1 и –1 (в каждой клетке – по одному числу). Рассмотрим всевозможные расположения фигурки <img align="middle" src="/storage/problem-media/116938/problem_116938_img_2.gif"> на доске (фигурку можно поворачивать, но её клетки не должны выходить за пределы доски). Назовём такое расположение <i> неудачным</i>, если сумма чисел, стоящих в четырёх клетках фигурки, не равна 0. Найдите наименьшее возможное число неудачных расположений.

Равнобедренный треугольник с углом 120° сложен ровно из трёх слоёв бумаги. Треугольник развернули – и получился прямоугольник. Нарисуйте такой прямоугольник и покажите пунктиром линии сгиба.

В некотором городе сеть автобусных маршрутов устроена так, что каждые два маршрута имеют ровно одну общую остановку, и на каждом маршруте есть хотя бы 4 остановки. Докажите, что все остановки можно распределить между двумя компаниями так, что на каждом маршруте найдутся остановки обеих компаний.

На окружности отмечены 2012 точек, делящих её на равные дуги. Из них выбрали <i>k</i> точек и построили выпуклый <i>k</i>-угольник с вершинами

в выбранных точках. При каком наибольшем <i>k</i> могло оказаться, что у этого многоугольника нет параллельных сторон?

а) В футбольном турнире в один круг участвовало 75 команд. За победу в матче команда получала 3 очка, за ничью 1 очко, за поражение 0 очков. Известно, что каждые две команды набрали различное количество очков. Найдите наименьшую возможную разность очков у команд, занявших первое и последнее места.б) Тот же вопрос для <i>n</i> команд.

В клетках таблицы <i>m</i>×<i>n</i> расставлены числа. Оказалось, что в каждой клетке записано количество соседних с ней по стороне клеток, в которых стоит единица. При этом не все числа – нули. При каких числах <i>m</i> и <i>n</i>, больших 100, такое возможно?

Клетки доски размером 5×5 раскрашены в шахматном порядке (угловые клетки – чёрные). По чёрным клеткам этой доски двигается фигура – мини-слон, оставляя след на каждой клетке, где он побывал, и больше в эту клетку не возвращаясь. Мини-слон может ходить либо в свободные от следов соседние (по диагонали) клетки, либо прыгать (также по диагонали) через одну клетку, в которой оставлен след, на свободную клетку за ней. Какое наибольшее количество клеток сможет посетить мини-слон?

Главная аудитория фирмы "Рога и копыта" представляет собой квадратный зал из восьми рядов по восемь мест. 64 сотрудника фирмы писали в этой аудитории тест, в котором было шесть вопросов с двумя вариантами ответа на каждый. Могло ли так оказаться, что среди наборов ответов сотрудников нет одинаковых, причем наборы ответов любых двух людей за соседними столами совпали не больше, чем в одном вопросе? (Столы называются соседними, если они стоят рядом в одном ряду или друг за другом в соседних рядах.)

  а) Три богатыря едут верхом по кольцевой дороге против часовой стрелки. Могут ли они ехать неограниченно долго с различными постоянными скоростями, если на дороге есть только одна точка, в которой богатыри имеют возможность обгонять друг друга?

  А если богатырей

  б) десять?

  в) тридцать три?

На доске начерчен выпуклый четырёхугольник. Алёша утверждает, что его можно разрезать диагональю на два остроугольных треугольника. Боря – что можно на два прямоугольных, а Вася – что на два тупоугольных.

Оказалось, что ровно один из троих неправ. Про кого можно наверняка утверждать, что он прав?

На дверце сейфа написано произведение степеней<i>a</i><sup><i>n</i></sup><i>b</i><sup><i>m</i></sup><i>c</i><sup><i>k</i></sup>. Чтобы дверца открылась, надо заменить каждую из шести букв натуральным числом так, чтобы в произведении получился куб натурального числа. Пинки, не подумав, уже заменил какие-то три буквы числами. Всегда ли Брейн сможет заменить три оставшиеся, чтобы дверца открылась?

Даны <i>N</i> синих и <i>N</i> красных палочек, причём сумма длин синих палочек равна сумме длин красных. Известно, что из синих палочек можно сложить <i>N</i>-угольник, и из красных – тоже. Всегда ли можно выбрать одну синюю и одну красную палочки и перекрасить их (синюю – в красный цвет, а красную – в синий) так, что снова из синих палочек можно будет сложить <i>N</i>-угольник, и из красных – тоже? Решите задачу

  а) для  <i>N</i> = 3;

  б) для произвольного натурального  <i>N</i> > 3.

Два муравья проползли каждый по своему замкнутому маршруту на доске 7×7. Каждый полз только по сторонам клеток доски и побывал в каждой из 64 вершин клеток ровно один раз. Каково наименьшее возможное число таких сторон, по которым проползали и первый, и второй муравьи?

Дракон заточил в темницу рыцаря и выдал ему 100 разных монет, половина из которых волшебные (какие именно – знает только дракон). Каждый день рыцарь раскладывает все монеты на две кучки (не обязательно равные). Если в кучках окажется поровну волшебных монет или поровну обычных, дракон отпустит рыцаря. Сможет ли рыцарь гарантированно освободиться не позже, чем

  а) на 50-й день?

  б) на 25-й день?

Можно ли так раскрасить все клетки бесконечной клетчатой плоскости в белый и чёрный цвета, чтобы каждая вертикальная прямая и каждая горизонтальная прямая пересекали конечное число белых клеток, а каждая наклонная прямая конечное число чёрных?

На новом сайте зарегистрировалось 2000 человек. Каждый пригласил к себе в друзья по 1000 человек. Два человека <i>объявляются</i> друзьями тогда и только тогда, когда каждый из них пригласил другого в друзья. Какое наименьшее количество пар друзей могло образоваться?

На доске написаны три натуральных числа, не превосходящих 40. За один ход можно увеличить любое из написанных чисел на число процентов, равное одному из двух оставшихся чисел, если в результате получится целое число. Существуют ли такие исходные числа, что за несколько ходов одно из чисел на доске можно сделать больше 2011?

На плоскости расположен круг. Какое наименьшее количество прямых надо провести, чтобы, симметрично отражая данный круг относительно этих прямых (в любом порядке конечное количество раз), можно было накрыть им любую заданную точку плоскости?

В некоторой точке круглого острова радиусом 1 км зарыт клад. На берегу острова стоит математик с прибором, который указывает направление на клад, когда расстояние до клада не превосходит 500 м. Кроме того, у математика есть карта острова, на которой он может фиксировать все свои перемещения, выполнять измерения и геометрические построения. Математик утверждает, что у него есть алгоритм, как добраться до клада, пройдя меньше 4 км. Может ли это быть правдой?

Полицейский участок расположен на прямой дороге, бесконечной в обе стороны. Некто угнал старую полицейскую машину, максимальная скорость которой составляет 90% от максимальной скорости новой машины. В некоторый момент в участке спохватились и послали вдогонку полицейского на новой полицейской машине. Однако вот беда: полицейский не знал, ни когда машина была угнана, ни в каком направлении вдоль дороги уехал угонщик. Сможет ли полицейский поймать угонщика?

Банкомат обменивает монеты: дублоны на пистоли и наоборот. Пистоль стоит <i>s</i> дублонов, а дублон – <sup>1</sup>/<i><sub>s</sub></i> пистолей, где <i>s</i> не обязательно целое. В банкомат можно вбросить любое число монет одного вида, после чего он выдаст в обмен монеты другого вида, округляя результат до ближайшего целого числа (если ближайших чисел два, выбирается большее).   а) Может ли так быть, что обменяв сколько-то дублонов на пистоли, а затем обменяв полученные пистоли на дублоны, мы получим больше дублонов, чем было вначале?   б) Если да, то может ли случиться, что полученное число дублонов ещё увеличится, если проделать с ними такую же операцию?

Многоугольник можно разрезать на две равные части тремя различными способами. Верно ли, что у него обязательно есть центр или ось симметрии?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка