Олимпиадные задачи по математике
Главная аудитория фирмы "Рога и копыта" представляет собой квадратный зал из восьми рядов по восемь мест. 64 сотрудника фирмы писали в этой аудитории тест, в котором было шесть вопросов с двумя вариантами ответа на каждый. Могло ли так оказаться, что среди наборов ответов сотрудников нет одинаковых, причем наборы ответов любых двух людей за соседними столами совпали не больше, чем в одном вопросе? (Столы называются соседними, если они стоят рядом в одном ряду или друг за другом в соседних рядах.)
Дана таблица <i>n×n</i>, столбцы которой пронумерованы числами от 1 до <i>n</i>. В клетки таблицы расставляются числа 1, ..., <i>n</i> так, что в каждой строке и в каждом столбце все числа различны. Назовём клетку <i>хорошей</i>, если число в ней больше номера столбца, в котором она находится. При каких <i>n</i> существует расстановка, в которой во всех строках одинаковое количество хороших клеток?