Олимпиадные задачи по теме «Числовые последовательности» для 9 класса - сложность 3 с решениями

Последовательность(<i>a<sub>n</sub></i>)задана условиями<i> a<sub>1</sub>= </i>1000000,<i> a<sub>n+</sub></i>1<i>=n</i>[<i><img align="absmiddle" src="/storage/problem-media/111805/problem_111805_img_2.gif"></i>]<i>+n </i>. Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.

По данному натуральному числу <i>a</i><sub>0</sub> строится последовательность {<i>a<sub>n</sub></i>} следующим образом   <img align="absmiddle" src="/storage/problem-media/110036/problem_110036_img_2.gif">   если <i>a<sub>n</sub></i> нечётно, и <sup><i>a</i><sub>0</sub></sup>/<sub>2</sub>, если <i>a<sub>n</sub></i> чётно. Докажите, что при любом нечётном  <i>a</i><sub>0</sub> > 5  в последовательности {<i>a<sub>n</sub></i>} встретятся сколь угодно большие числа.

Последовательность натуральных чисел <i>a<sub>n</sub></i> строится следующим образом: <i>a</i><sub>0</sub> – некоторое натуральное число;  <i>a</i><sub><i>n</i>+1</sub> = &frac15; <i>a<sub>n</sub></i>,  если <i>a<sub>n</sub></i> делится на 5;

<i>a</i><sub><i>n</i>+1</sub> = [<img align="absmiddle" src="/storage/problem-media/109784/problem_109784_img_2.gif"> <i>a<sub>n</sub></i>],  если <i>a<sub>n</sub></i> не делится на 5. Докажите, что начиная с некоторого члена последовательность <i>a<sub>n</sub></i> возрастает.

Найдите все бесконечные ограниченные последовательности натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., для всех членов которых, начиная с третьего, выполнено <div align="center"><img src="/storage/problem-media/109692/problem_109692_img_2.gif"></div>

<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ...  – возрастающая последовательность натуральных чисел. Известно, что  <i>a<sub>a<sub>k</sub></sub></i> = 3<i>k</i>  для любого <i>k</i>.

Найти   а)  <i>a</i><sub>100</sub>;   б)  <i>a</i><sub>1983</sub>.

За дядькой Черномором выстроилось чередой бесконечное число богатырей. Доказать, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечно много богатырей и все они стояли по росту (не обязательно в порядке убывания роста).

При каком значении<i>K</i>величина<i>A</i><sub>k</sub>=${\dfrac{19^k+66^k}{k!}}$максимальна?

Дана возрастающая последовательность положительных чисел  $...< a_{-2} < a_{-1} < a_{0} < a_{1} < a_{2} < ...,$  бесконечная в обе стороны. Пусть $b_k$ – наименьшее целое число со свойством: отношение суммы любых $k$ подряд идущих членов данной последовательности к наибольшему из этих $k$ членов не превышает $b_k$. Докажите, что последовательность $b_{1}, b_{2}, b_{3}$, ... либо совпадает с натуральным рядом 1, 2, 3, ..., либо с некоторого момента постоянна.

На доске написаны $2n$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на сумму и разность чисел этой пары (не обязательно вычитать из большего числа меньшее; все замены происходят одновременно). Докажите, что на доске больше никогда не появятся $2n$ последовательных чисел.

Муха двигается из начала координат только вправо или вверх по линиям целочисленной сетки (монотонное блуждание). В каждом узле сетки муха случайным образом выбирает направление дальнейшего движения: вверх или вправо.

  а) Докажите, что рано или поздно муха достигнет точки с абсциссой 2011.

  б) Найдите математическое ожидание ординаты Мухи в момент, когда муха достигла абсциссы 2011.

  По случаю начала зимних каникул все мальчики из 8 "В" пошли в тир. Известно, что в 8 "В" <i>n</i> мальчиков. В тире, куда пришли ребята, <i>n</i> мишеней. Каждый из мальчиков случайным образом выбирает себе мишень, при этом некоторые ребята могли выбрать одну и ту же мишень. После этого все одновременно делают залп по своим мишеням. Известно, что каждый из мальчиков попал в свою мишень. Мишень считается поражённой, если в нее попал хоть один мальчик.

  а) Найти среднее количество поражённых мишеней.

  б) Может ли среднее количество поражённых мишеней быть меньше <sup><i>n</i></sup>/<sub>2</sub>?

Петя хочет выписать все возможные последовательности из 100 натуральных чисел, в каждой из которых хотя бы раз встречается тройка, а любые два соседних члена различаются не больше, чем на 1. Сколько последовательностей ему придётся выписать?

Дано <i>N</i> точек, никакие три из которых не лежат на одной прямой. Каждые две из этих точек соединены отрезком, и каждый отрезок окрашен в один из <i>k</i> цветов. Докажите, что если  <i>N</i> > [<i>k</i>!<i>e</i>],  то среди данных точек можно выбрать такие три, что все стороны образованного ими треугольника будут окрашены в один цвет.

За дядькой Черномором выстроились чередой бесконечное число богатырей разного роста. Докажите, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечное число богатырей и все они стояли по росту (в порядке возрастания или убывания).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка