Олимпиадные задачи по теме «Алгебра и арифметика» для 8 класса - сложность 3 с решениями
Алгебра и арифметика
Все категорииЛиса Алиса и кот Базилио вырастили на дереве 20 фальшивых купюр и теперь вписывают в них семизначные номера. На каждой купюре есть 7 пустых клеток для цифр. Базилио называет по одной цифре "1" или "2" (других он не знает), а Алиса вписывает названную цифру в любую свободную клетку любой купюры и показывает результат Базилио. Когда все клетки заполнены, Базилио берет себе как можно больше купюр с разными номерами (из нескольких с одинаковым номером он берет лишь одну), а остаток забирает Алиса. Какое наибольшее количество купюр может получить Базилио, как бы ни действовала Алиса?
Фигура <i>мамонт</i> бьёт как слон (по диагоналям), но только в трёх направлениях из четырёх (отсутствующее направление может быть разным для разных мамонтов). Какое наибольшее число не бьющих друг друга мамонтов можно расставить на шахматной доске 8×8?
Найдите все такие натуральные <i>k</i>, что при каждом нечётном <i>n</i> > 100 число 20<sup><i>n</i></sup> + 13<sup><i>n</i></sup> делится на <i>k</i>.
Даны три квадратных трёхчлена <i>P</i>(<i>x</i>), <i>Q</i>(<i>x</i>) и <i>R</i>(<i>x</i>) с положительными старшими коэффициентами, имеющие по два различных корня. Оказалось, что при подстановке корней трёхчлена <i>R</i>(<i>x</i>) в многочлен <i>P</i>(<i>x</i>) + <i>Q</i>(<i>x</i>) получаются равные значения. Аналогично при подстановке корней трёхчлена <i>P</i>(<i>x</i>) в многочлен <i>Q</i>(<i>x</i>) + <i>R</i>(<i>x</i>) получаются равные значения, а также при подстановке корней трёхчлена <i>Q</i>(<i>x</i>) в многочлен <i>P</i>(<i&g...
В клетках доски 8×8 расставлены числа 1 и –1 (в каждой клетке – по одному числу). Рассмотрим всевозможные расположения фигурки <img align="middle" src="/storage/problem-media/116938/problem_116938_img_2.gif"> на доске (фигурку можно поворачивать, но её клетки не должны выходить за пределы доски). Назовём такое расположение <i> неудачным</i>, если сумма чисел, стоящих в четырёх клетках фигурки, не равна 0. Найдите наименьшее возможное число неудачных расположений.
При каких <i>n</i> > 3 правильный <i>n</i>-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?
Машина ездит по кольцевой трассе по часовой стрелке. В полдень в две разных точки трассы встали два наблюдателя. К какому-то моменту машина проехала возле каждого наблюдателя не менее 30 раз. Первый наблюдатель заметил, что машина проезжала каждый следующий круг ровно на секунду быстрее, чем предыдущий. Второй заметил, что машина проезжала каждый следующий круг ровно на секунду медленнее, чем предыдущий. Докажите, что прошло не менее полутора часов.
В некоторых клетках квадрата 11×11 стоят плюсы, причём всего плюсов чётное количество. В каждом квадратике 2×2 тоже чётное число плюсов.
Докажите, что чётно и число плюсов в 11 клетках главной диагонали квадрата.
Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 222 ореха по двум коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число <i>N</i> от 1 до 222. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую третью коробочку и предъявить Чичикову одну или две коробочки, где в сумме ровно <i>N</i> орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв.
У Носорога на шкуре есть вертикальные и горизонтальные складки. Всего складок 17. Если Носорог чешется боком о дерево, то либо две горизонтальные, либо две вертикальные складки на этом боку пропадают, зато на другом боку прибавляются две складки: горизонтальная и вертикальная. (Если двух складок одного направления нет, то ничего не происходит.) Носорог почесался несколько раз. Могло ли случиться, что на каждом боку вертикальных складок стало столько, сколько там раньше было горизонтальных, а горизонтальных стало столько, сколько там было вертикальных?
а) В футбольном турнире в один круг участвовало 75 команд. За победу в матче команда получала 3 очка, за ничью 1 очко, за поражение 0 очков. Известно, что каждые две команды набрали различное количество очков. Найдите наименьшую возможную разность очков у команд, занявших первое и последнее места.б) Тот же вопрос для <i>n</i> команд.
Назовем приведённый квадратный трёхчлен с целыми коэффициентами <i>сносным</i>, если его корни – целые числа, а коэффициенты не превосходят по модулю 2013. Вася сложил все сносные квадратные трёхчлены. Докажите, что у него получился трёхчлен, не имеющий действительных корней.
Рациональные числа <i>x, y</i> и <i>z</i> таковы, что все числа <i>x + y</i>² + <i>z</i>², <i>x</i>² + <i>y</i> + <i>z</i>² и <i>x</i>² + <i>y</i>² + <i>z</i> целые. Докажите, что число 2<i>x</i> целое.
Клетки доски размером 5×5 раскрашены в шахматном порядке (угловые клетки – чёрные). По чёрным клеткам этой доски двигается фигура – мини-слон, оставляя след на каждой клетке, где он побывал, и больше в эту клетку не возвращаясь. Мини-слон может ходить либо в свободные от следов соседние (по диагонали) клетки, либо прыгать (также по диагонали) через одну клетку, в которой оставлен след, на свободную клетку за ней. Какое наибольшее количество клеток сможет посетить мини-слон?
В каждой клетке таблицы 10×10 записано число. В каждой строке подчеркнули наибольшее число (или одно из наибольших, если их несколько), а в каждом столбце – наименьшее (или одно из наименьших). Оказалось, что все подчёркнутые числа подчёркнуты ровно два раза. Докажите, что все числа, записанные в таблице, между собой равны.
Для натуральных чисел <i>a</i> > <i>b</i> > 1 определим последовательность <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ... формулой <img align="absmiddle" src="/storage/problem-media/116644/problem_116644_img_2.gif"> . Найдите наименьшее <i>d</i>, при котором ни при каких <i>a</i> и <i>b</i> эта последовательность не содержит <i>d</i> последовательных членов, являющихся простыми числами.
В каждой клетке таблицы, состоящей из 10 столбцов и <i>n</i> строк, записана цифра. Известно, что для каждой строки <i>A</i> и любых двух столбцов найдётся строка, отличающаяся от <i>A</i> ровно в этих двух столбцах. Докажите, что <i>n</i> ≥ 512.
У Пети и Коли в тетрадях записаны по два числа; изначально – это числа 1 и 2 у Пети, 3 и 4 – у Коли. Раз в минуту Петя составляет квадратный трёхчлен <i>f</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа, а Коля – квадратный трёхчлен <i>g</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа. Если уравнение <i>f</i>(<i>x</i>) = <i>g</i>(<i>x</i>) имеет два различных корня, то один из мальчиков заменяет свою пару чисел на эти корни; иначе ничего не происходит. Какое второе число могло оказаться у Пети в тетради в тот момент, когда первое стало равным 5?
Существуют ли три взаимно простых в совокупности натуральных числа, квадрат каждого из которых делится на сумму двух оставшихся?
Даны различные натуральные числа <i>a</i>, <i>b</i>. На координатной плоскости нарисованы графики функций <i>y</i> = sin <i>ax</i>, <i>y</i> = sin <i>bx</i> и отмечены все точки их пересечения. Докажите, что существует натуральное число <i>c</i>, отличное от <i>a</i>, <i>b</i> и такое, что график функции <i>y</i> = sin <i>cx</i> проходит через все отмеченные точки.
Главная аудитория фирмы "Рога и копыта" представляет собой квадратный зал из восьми рядов по восемь мест. 64 сотрудника фирмы писали в этой аудитории тест, в котором было шесть вопросов с двумя вариантами ответа на каждый. Могло ли так оказаться, что среди наборов ответов сотрудников нет одинаковых, причем наборы ответов любых двух людей за соседними столами совпали не больше, чем в одном вопросе? (Столы называются соседними, если они стоят рядом в одном ряду или друг за другом в соседних рядах.)
На окружности отмечено 2<i>N</i> точек (<i>N</i> – натуральное число). Известно, что через любую точку внутри окружности проходит не более двух хорд с концами в отмеченных точках. Назовем <i>паросочетанием</i> такой набор из <i>N</i> хорд с концами в отмеченных точках, что каждая отмеченная точка является концом ровно одной из этих хорд. Назовём паросочетание <i>чётным</i>, если количество точек, в которых пересекаются его хорды, чётно, и <i>нечётным</i> иначе. Найдите разность между количеством чётных и нечётных паросочетаний.
Дан квадрат <i>n</i>×<i>n</i>. Изначально его клетки раскрашены в белый и чёрный цвета в шахматном порядке, причём хотя бы одна из угловых клеток чёрная. За один ход разрешается в некотором квадрате 2×2 одновременно перекрасить входящие в него четыре клетки по следующему правилу: каждую белую перекрасить в чёрный цвет, каждую чёрную – в зелёный, а каждую зелёную – в белый. При каких <i>n</i> за несколько ходов можно получить шахматную раскраску, в которой чёрный и белый цвета поменялись местами?
Целые числа <i>a</i> и <i>b</i> таковы, что при любых натуральных <i>m</i> и <i>n</i> число <i>am</i>² + <i>bn</i>² является точным квадратом. Докажите, что <i>ab</i> = 0.
Прямую палку длиной 2 метра распилили на <i>N</i> палочек, длина каждой из которых выражается целым числом сантиметров. При каком наименьшем <i>N</i> можно гарантировать, что, использовав все получившиеся палочки, можно, не ломая их, сложить контур некоторого прямоугольника?