Олимпиадные задачи по теме «Алгебра и арифметика» для 11 класса - сложность 2 с решениями

Известно, что  <i>b</i> = 2013<sup>2013</sup> + 2.  Будут ли числа  <i>b</i>³ + 1  и  <i>b</i>² + 2  взаимно простыми?

Найдите наибольшее значение выражения  <i>х + у</i>,  если   <img align="absmiddle" src="/storage/problem-media/116997/problem_116997_img_2.gif">   <i>x</i> ∈ [0, <sup>3π</sup>/<sub>2</sub>],   <i>y</i> ∈ [π, 2π].

Куб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?

Найдите наибольшее значение выражения  <i>ab + bc + ac + abc</i>,  если  <i>a + b + c</i> = 12  (<i>a, b</i> и <i>с</i> – неотрицательные числа).

Дан многочлен <i>P</i>(<i>x</i>) с целыми коэффициентами. Известно, что  <i>Р</i>(1) = 2013,  <i>Р</i>(2013) = 1,  <i>P</i>(<i>k</i>) = <i>k</i>,  где <i>k</i> – некоторое целое число. Найдите <i>k</i>.

Выдающемуся бразильскому футболисту Роналдиньо Гаушо исполнится <i>X</i> лет в <i>X</i>² году.

А сколько лет ему исполнится в 2018 году, когда чемпионат мира пройдёт в России?

Известно, что  tg α + tg β = <i>p</i>,  ctg α + ctg β = <i>q</i>.  Найдите   tg(α + β).

Существуют ли четыре последовательных натуральных числа, каждое из которых можно представить в виде суммы квадратов двух натуральных чисел?

Какое наибольшее количество треугольных граней может иметь пятигранник?

Изобразите на координатной плоскости множество всех точек, координаты <i>x</i> и <i>у</i> которых удовлетворяют неравенству  <img align="absmiddle" src="/storage/problem-media/116892/problem_116892_img_2.gif"> .

Коэффициенты квадратного уравнения  <i>ax</i>² + <i>bx + c</i> = 0  удовлетворяют условию  2<i>a</i> + 3<i>b</i> + 6<i>c</i> = 0.

Докажите, что это уравнение имеет корень на интервале  (0, 1).

На шахматную доску поставлены 11 коней так, что никакие два не бьют друг друга.

Докажите, что на ту же доску можно поставить ещё одного коня с сохранением этого свойства.

На какую наибольшую степень двойки делится число  10<sup>20</sup> – 2<sup>20</sup>?

Последовательность <i>a<sub>n</sub></i> задана условием:  <i>a</i><sub><i>n</i>+1</sub> = <i>a<sub>n</sub> – a</i><sub><i>n</i>–1</sub>.  Найдите <i>a</i><sub>100</sub>, если  <i>a</i><sub>1</sub> = 3,  <i>a</i><sub>2</sub> = 7.

В десятичной записи некоторого числа цифры расположены слева направо в порядке убывания. Может ли это число быть кратным числу 111?

Функция <i>f</i>(<i>x</i>) такова, что для всех значений <i>x</i> выполняется равенство  <i>f</i>(<i>x</i> + 1) = <i>f</i>(<i>x</i>) + 2<i>x</i> + 3.  Известно, что  <i>f</i>(0) = 1.  Найдите <i>f</i>(2012).

Туристическая фирма провела акцию: "Купи путевку в Египет, приведи четырёх друзей, которые также купят путевку, и получи стоимость путевки обратно". За время действия акции 13 покупателей пришли сами, остальных привели друзья. Некоторые из них привели ровно по четыре новых клиента, а остальные 100 не привели никого. Сколько туристов отправились в Страну Пирамид бесплатно?

В каждой клетке клетчатого квадрата 7×7 стоит по числу. Сумма чисел в каждом квадратике 2×2 и 3×3 равна 0.

Докажите, что сумма чисел в 24 клетках, расположенных по периметру квадрата, тоже равна 0.

Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов:<div align="center"><img src="/storage/problem-media/116812/problem_116812_img_2.gif"></div> Могло ли такое быть?

На плоскости нарисовали кривые  <i>y</i> = cos <i>x</i>  и  <i>x</i> = 100 cos(100<i>y</i>)  и отметили все точки их пересечения, координаты которых положительны. Пусть <i>a</i> – сумма абсцисс, а <i>b</i> – сумма ординат этих точек. Найдите  <sup><i>a</i></sup>/<sub><i>b</i></sub>.

Дана клетчатая полоска из 2<i>n</i> клеток, пронумерованных слева направо следующим образом:1, 2, 3, ..., <i>n</i>, –<i>n</i>, ..., –2, –1 По этой полоске перемещают фишку, каждым ходом сдвигая её на то число клеток, которое указано в текущей клетке (вправо, если число положительно, и влево, если отрицательно). Известно, что фишка, начав с любой клетки, обойдёт все клетки полоски. Докажите, что число  2<i>n</i> + 1  простое.

К каждому члену некоторой конечной последовательности подряд идущих натуральных чисел приписали справа по две цифры и получили последовательность квадратов подряд идущих натуральных чисел. Какое наибольшее число членов могла иметь эта последовательность?

Для заданных значений <i>a, b, c</i> и <i>d</i> оказалось, что графики функций  <img align="absmiddle" src="/storage/problem-media/116697/problem_116697_img_2.gif">  и  <img align="absmiddle" src="/storage/problem-media/116697/problem_116697_img_3.gif">  имеют ровно одну общую точку. Докажите, что графики функций  <img align="absmiddle" src="/storage/problem-media/116697/problem_116697_img_4.gif">  и  <img align="absmiddle" src="/storage/problem-media/116697/problem_116697_img_5.gif">  также имеют ровно одну общую точку.

Даны два различных приведённых кубических многочлена <i>F</i>(<i>x</i>) и <i>G</i>(<i>x</i>). Выписали все корни уравнений  <i>F</i>(<i>x</i>) = 0,  <i>G</i>(<i>x</i>) = 0,  <i>F</i>(<i>x</i>) = <i>G</i>(<i>x</i>). Оказалось, что выписаны восемь различных чисел. Докажите, что наибольшее и наименьшее из них не могут одновременно являться корнями многочлена <i>F</i>(<i>x</i>).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка