Олимпиадные задачи по теме «Алгебра и арифметика» для 10 класса - сложность 2-5 с решениями
Алгебра и арифметика
Все категорииИзвестно, что <i>b</i> = 2013<sup>2013</sup> + 2. Будут ли числа <i>b</i>³ + 1 и <i>b</i>² + 2 взаимно простыми?
Найдите наибольшее значение выражения <i>х + у</i>, если <img align="absmiddle" src="/storage/problem-media/116997/problem_116997_img_2.gif"> <i>x</i> ∈ [0, <sup>3π</sup>/<sub>2</sub>], <i>y</i> ∈ [π, 2π].
Существуют ли 2013 таких различных натуральных чисел, что сумма каждых двух из них делится на их разность?
Куб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?
Найдите наибольшее значение выражения <i>ab + bc + ac + abc</i>, если <i>a + b + c</i> = 12 (<i>a, b</i> и <i>с</i> – неотрицательные числа).
Дан многочлен <i>P</i>(<i>x</i>) с целыми коэффициентами. Известно, что <i>Р</i>(1) = 2013, <i>Р</i>(2013) = 1, <i>P</i>(<i>k</i>) = <i>k</i>, где <i>k</i> – некоторое целое число. Найдите <i>k</i>.
Выдающемуся бразильскому футболисту Роналдиньо Гаушо исполнится <i>X</i> лет в <i>X</i>² году.
А сколько лет ему исполнится в 2018 году, когда чемпионат мира пройдёт в России?
Известно, что tg α + tg β = <i>p</i>, ctg α + ctg β = <i>q</i>. Найдите tg(α + β).
Фигура <i>мамонт</i> бьёт как слон (по диагоналям), но только в трёх направлениях из четырёх (отсутствующее направление может быть разным для разных мамонтов). Какое наибольшее число не бьющих друг друга мамонтов можно расставить на шахматной доске 8×8?
Найдите все такие натуральные <i>k</i>, что при каждом нечётном <i>n</i> > 100 число 20<sup><i>n</i></sup> + 13<sup><i>n</i></sup> делится на <i>k</i>.
Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?
<i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>) – приведённые квадратные трёхчлены, имеющие по два различных корня. Оказалось, что сумма двух чисел, получаемых при подстановке корней трёхчлена <i>P</i>(<i>x</i>) в трёхчлен <i>Q</i>(<i>x</i>), равна сумме двух чисел, получаемых при подстановке корней трёхчлена <i>Q</i>(<i>x</i>) в трёхчлен <i>P</i>(<i>x</i>). Докажите, что дискриминанты трёхчленов <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>) равны.
Три натуральных числа таковы, что последняя цифра суммы любых двух из них является последней цифрой третьего числа. Произведение этих трёх чисел записали на доске, а затем всё, кроме трёх последних цифр этого произведения, стёрли. Какие три цифры могли остаться на доске?
Натуральные числа <i>a, b</i> и <i>c</i>, где <i>c</i> ≥ 2, таковы, что <sup>1</sup>/<sub><i>a</i></sub> + <sup>1</sup>/<sub><i>b</i></sub> = <sup>1</sup>/<sub><i>c</i></sub>. Докажите, что хотя бы одно из чисел <i>a + c, b + c</i> – составное.
Даны три квадратных трёхчлена <i>P</i>(<i>x</i>), <i>Q</i>(<i>x</i>) и <i>R</i>(<i>x</i>) с положительными старшими коэффициентами, имеющие по два различных корня. Оказалось, что при подстановке корней трёхчлена <i>R</i>(<i>x</i>) в многочлен <i>P</i>(<i>x</i>) + <i>Q</i>(<i>x</i>) получаются равные значения. Аналогично при подстановке корней трёхчлена <i>P</i>(<i>x</i>) в многочлен <i>Q</i>(<i>x</i>) + <i>R</i>(<i>x</i>) получаются равные значения, а также при подстановке корней трёхчлена <i>Q</i>(<i>x</i>) в многочлен <i>P</i>(<i&g...
В клетках доски 8×8 расставлены числа 1 и –1 (в каждой клетке – по одному числу). Рассмотрим всевозможные расположения фигурки <img align="middle" src="/storage/problem-media/116938/problem_116938_img_2.gif"> на доске (фигурку можно поворачивать, но её клетки не должны выходить за пределы доски). Назовём такое расположение <i> неудачным</i>, если сумма чисел, стоящих в четырёх клетках фигурки, не равна 0. Найдите наименьшее возможное число неудачных расположений.
Ненулевые числа <i>a</i> и <i>b</i> таковы, что уравнение <i>a</i>(<i>x – a</i>)² + <i>b</i>(<i>x – b</i>)² = 0 имеет единственное решение. Докажите, что |<i>a| = |b</i>|.
По кругу выписаны 1000 чисел. Петя вычислил модули разностей соседних чисел, Вася – модули разностей чисел, стоящих через одно, а Толя – модули разностей чисел, стоящих через два. Известно, что каждое Петино число больше любого Васиного хотя бы вдвое. Докажите, что каждое Толино число не меньше любого Васиного.
Даны натуральные числа <i>M</i> и <i>N</i>, большие десяти, состоящие из одинакового количества цифр и такие, что <i>M</i> = 3<i>N</i>. Чтобы получить число <i>M</i>, надо в числе <i>N</i> к одной из цифр прибавить 2, а к каждой из остальных цифр прибавить по нечётной цифре. Какой цифрой могло оканчиваться число <i>N</i>?
При каких <i>n</i> можно оклеить в один слой поверхность клетчатого куба <i>n</i>×<i>n</i>×<i>n</i> бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?
При каких <i>n</i> > 3 правильный <i>n</i>-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?
Существуют ли четыре последовательных натуральных числа, каждое из которых можно представить в виде суммы квадратов двух натуральных чисел?
Какое наибольшее количество треугольных граней может иметь пятигранник?
Изобразите на координатной плоскости множество всех точек, координаты <i>x</i> и <i>у</i> которых удовлетворяют неравенству <img align="absmiddle" src="/storage/problem-media/116892/problem_116892_img_2.gif"> .
В футбольном чемпионате участвуют 18 команд. На сегодняшний день проведено 8 туров (в каждом туре все команды разбиваются на пары и в каждой паре команды играют друг с другом, причём пары не повторяются). Верно ли, что найдутся три команды, которые не сыграли ни одного матча между собой?