Олимпиадные задачи по теме «Теория чисел. Делимость» для 11 класса - сложность 3-4 с решениями

Существуют ли 2013 таких различных натуральных чисел, что сумма каждых двух из них делится на их разность?

Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 1001 орех по трём коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число <i>N</i> от 1 до 1001. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую четвёртую коробочку и предъявить Чичикову одну или несколько коробочек, где в сумме ровно <i>N</i> орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв?

Пусть <i>C</i>(<i>n</i>) – количество различных простых делителей числа <i>n</i>.

  а) Конечно или бесконечно число таких пар натуральных чисел  (<i>a, b</i>),  что  <i>a ≠ b</i>  и  <i>C</i>(<i>a + b</i>) = <i>C</i>(<i>a</i>) + <i>C</i>(<i>b</i>)?

  б) А если при этом дополнительно требуется, чтобы  <i>C</i>(<i>a + b</i>) > 1000?

Для натурального <i>n</i> обозначим  <i>S<sub>n</sub></i> = 1! + 2! + ... + <i>n</i>!.  Докажите, что при некотором <i>n</i> у числа <i>S<sub>n</sub></i> есть простой делитель, больший 10<sup>2012</sup>.

Существуют ли такие натуральные числа <i>a, b, c</i>, большие 10<sup>10</sup>, что их произведение делится на любое из них, увеличенное на 2012?

Пусть  <i>a</i><sub>1</sub>, ..., <i>a</i><sub>10</sub>  – различные натуральные числа, не меньшие 3, сумма которых равна 678. Может ли сумма остатков от деления некоторого натурального числа <i>n</i> на 20 чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>10</sub>, 2<i>a</i><sub>1</sub>, 2<i>a</i><sub>2</sub>,..., 2<i>a</i><sub>10</sub>  равняться 2012?

Докажите, что для любого натурального <i>n</i> существуют такие целые числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>,  что при всех целых <i>x</i> число

(...((<i>x</i>² + <i>a</i><sub>1</sub>)² + <i>a</i><sub>2</sub>)² + ... + <i>a</i><sub><i>n</i>–1</sub>)² + <i>a<sub>n</sub></i>   делится на  2<i>n</i> – 1.

Пусть <i>p</i> – простое число. Набор из  <i>p</i> + 2  натуральных чисел (не обязательно различных) назовём <i>интересным</i>, если сумма любых <i>p</i> из них делится на каждое из двух оставшихся чисел. Найдите все интересные наборы.

Обозначим через  <i>S</i>(<i>n</i>, <i>k</i>)  количество не делящихся на <i>k</i> коэффициентов разложения многочлена  (<i>x</i> + 1)<i><sup>n</sup></i>  по степеням <i>x</i>.

  а) Найдите  <i>S</i>(2012, 3).

  б) Докажите, что  <i>S</i>(2012<sup>2011</sup>, 2011)  делится на 2012.

Для натурального <i>a</i> обозначим через <i>P</i>(<i>a</i>) наибольший простой делитель числа  <i>a</i>² + 1.

Докажите, что существует бесконечно много таких троек различных натуральных чисел <i>a, b, c</i>, что  <i>P</i>(<i>a</i>) = <i>P</i>(<i>b</i>) = <i>P</i>(<i>c</i>).

Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив

  а) 17 номеров;

  б) менее 16 номеров?

У входа в пещеру стоит барабан, на нём по кругу через равные промежутки расположены<i>N</i>одинаковых с виду бочонков. Внутри каждого бочонка лежит селёдка – либо головой вверх, либо головой вниз, но где как – не видно (бочонки закрыты). За один ход Али-Баба выбирает любой набор бочонков (от 1 до<i>N</i>штук) и переворачивает их все. После этого барабан приходит во вращение, а когда останавливается, Али-Баба не может определить, какие бочонки перевёрнуты. Пещера откроется, если во время вращения барабана все<i>N</i>селёдок будут расположены головами в одну сторону. При каких<i>N</i>Али-Баба сможет открыть пещеру?

Обозначим через [<i>n</i>]! произведение 1·11·111·...·11...11 – всего <i>n</i> сомножителей, в последнем – <i>n</i> единиц.

Докажите, что  [<i>n</i> + <i>m</i>]!  делится на произведение [<i>n</i>]!·[<i>m</i>]!.

Докажите, что при  <i>n</i> > 1  число   1<sup>1</sup> + 3³ + ... + (2<sup><i>n</i></sup> – 1)<sup>2<sup><i>n</i></sup> – 1</sup>   делится на 2<i><sup>n</sup></i>, но не делится на 2<sup><i>n</i>+1</sup>.

  Назовём натуральное число <i>хорошим</i>, если все его цифры ненулевые. Хорошее число назовём <i>особым</i>, если в нём хотя бы <i>k</i> разрядов и цифры идут в порядке строгого возрастания (слева направо).   Пусть имеется некое хорошее число. За ход разрешается приписать с любого края или вписать между любыми его двумя цифрами особое число или же, наоборот, стереть в его записи особое число. При каком наибольшем <i>k</i> можно из каждого хорошего числа получить любое другое хорошее число с помощью таких ходов?

Сравните числа   <img align="absmiddle" src="/storage/problem-media/116374/problem_116374_img_2.gif">

В стране 100 городов и несколько дорог. Каждая дорога соединяет два каких-то города, дороги не пересекаются. Из каждого города можно добраться до любого другого, двигаясь по дорогам. Докажите, что можно объявить несколько дорог главными так, чтобы из каждого города выходило нечётное число главных дорог.

Квадратная доска разделена на <i>n</i>² прямоугольных клеток  <i>n</i> – 1  горизонтальными и  <i>n</i> – 1  вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все <i>n</i> клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.

Для прохождения теста тысячу мудрецов выстраивают в колонну. Из колпаков с номерами от 1 до 1001 один прячут, а остальные в случайном порядке надевают на мудрецов. Каждый видит только номера на колпаках всех впереди стоящих. Далее мудрецы по порядку от заднего к переднему называют вслух целые числа. Каждое число должно быть от 1 до 1001, причём нельзя называть то, что уже было сказано. Результат теста – число мудрецов, назвавших номер своего колпака. Мудрецы заранее знали условия теста и могли договориться, как действовать.

  а) Могут ли они гарантировать результат более 500?

  б) Могут ли они гарантировать результат не менее 999?

По кругу стоят 100 напёрстков. Под одним из них спрятана монетка. За один ход разрешается перевернуть четыре напёрстка и проверить, лежит ли под одним из них монетка. После этого их возвращают в исходное положение, а монетка перемещается под один из соседних с ней напёрстков. За какое наименьшее число ходов наверняка удастся обнаружить монетку?

Даны натуральные числа <i>x</i> и <i>y</i> из отрезка  [2, 100].  Докажите, что при некотором натуральном <i>n</i> число <i>x</i><sup>2<i><sup>n</sup></i></sup> + <i>y</i><sup>2<i><sup>n</sup></i></sup>  – составное.

Сколько раз функция   <i>f</i>(<i>x</i>) = cos <i>x</i> cos <sup><i>x</i></sup>/<sub>2</sub> cos <sup><i>x</i></sup>/<sub>3</sub> ... cos <sup><i>x</i></sup>/<sub>2009</sub>   меняет знак на отрезке  [0, <sup>2009π</sup>/<sub>2</sub>] ?

В ряд слева направо лежит 31 кошелёк, в каждом по 100 монет. Из одного кошелька часть монет переложили: по одной монете в каждый из кошельков справа от него. За один вопрос можно узнать суммарное число монет в любом наборе кошельков. За какое наименьшее число вопросов можно гарантированно вычислить "облегчённый" кошелёк?

Назовём тройку натуральных чисел  (<i>a, b, c</i>)  <i>квадратной</i>, если они образуют арифметическую прогрессию (именно в таком порядке), число <i>b</i> взаимно просто с каждым из чисел <i>a</i> и <i>c</i>, а число <i>abc</i> является точным квадратом. Докажите, что для любой квадратной тройки найдётся другая квадратная тройка, имеющая с ней хотя бы одно общее число. (Тройка  (<i>c, b, a</i>)  новой тройкой не считается.)

Для каждого простого <i>p</i> найдите наибольшую натуральную степень числа <i>p</i>!, на которую делится число (<i>p</i>²)!.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка