Олимпиадные задачи по теме «Теория чисел. Делимость» для 11 класса - сложность 2-3 с решениями
Теория чисел. Делимость
НазадИзвестно, что <i>b</i> = 2013<sup>2013</sup> + 2. Будут ли числа <i>b</i>³ + 1 и <i>b</i>² + 2 взаимно простыми?
Существуют ли 2013 таких различных натуральных чисел, что сумма каждых двух из них делится на их разность?
Куб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?
Дан многочлен <i>P</i>(<i>x</i>) с целыми коэффициентами. Известно, что <i>Р</i>(1) = 2013, <i>Р</i>(2013) = 1, <i>P</i>(<i>k</i>) = <i>k</i>, где <i>k</i> – некоторое целое число. Найдите <i>k</i>.
Существуют ли четыре последовательных натуральных числа, каждое из которых можно представить в виде суммы квадратов двух натуральных чисел?
Какое наибольшее количество треугольных граней может иметь пятигранник?
На какую наибольшую степень двойки делится число 10<sup>20</sup> – 2<sup>20</sup>?
В десятичной записи некоторого числа цифры расположены слева направо в порядке убывания. Может ли это число быть кратным числу 111?
Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 1001 орех по трём коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число <i>N</i> от 1 до 1001. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую четвёртую коробочку и предъявить Чичикову одну или несколько коробочек, где в сумме ровно <i>N</i> орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв?
Пусть <i>C</i>(<i>n</i>) – количество различных простых делителей числа <i>n</i>.
а) Конечно или бесконечно число таких пар натуральных чисел (<i>a, b</i>), что <i>a ≠ b</i> и <i>C</i>(<i>a + b</i>) = <i>C</i>(<i>a</i>) + <i>C</i>(<i>b</i>)?
б) А если при этом дополнительно требуется, чтобы <i>C</i>(<i>a + b</i>) > 1000?
Существуют ли такие натуральные числа <i>a, b, c</i>, большие 10<sup>10</sup>, что их произведение делится на любое из них, увеличенное на 2012?
Пусть <i>a</i><sub>1</sub>, ..., <i>a</i><sub>10</sub> – различные натуральные числа, не меньшие 3, сумма которых равна 678. Может ли сумма остатков от деления некоторого натурального числа <i>n</i> на 20 чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>10</sub>, 2<i>a</i><sub>1</sub>, 2<i>a</i><sub>2</sub>,..., 2<i>a</i><sub>10</sub> равняться 2012?
Докажите, что для любого натурального <i>n</i> существуют такие целые числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, что при всех целых <i>x</i> число
(...((<i>x</i>² + <i>a</i><sub>1</sub>)² + <i>a</i><sub>2</sub>)² + ... + <i>a</i><sub><i>n</i>–1</sub>)² + <i>a<sub>n</sub></i> делится на 2<i>n</i> – 1.
Пусть <i>p</i> – простое число. Набор из <i>p</i> + 2 натуральных чисел (не обязательно различных) назовём <i>интересным</i>, если сумма любых <i>p</i> из них делится на каждое из двух оставшихся чисел. Найдите все интересные наборы.
Дана клетчатая полоска из 2<i>n</i> клеток, пронумерованных слева направо следующим образом:1, 2, 3, ..., <i>n</i>, –<i>n</i>, ..., –2, –1 По этой полоске перемещают фишку, каждым ходом сдвигая её на то число клеток, которое указано в текущей клетке (вправо, если число положительно, и влево, если отрицательно). Известно, что фишка, начав с любой клетки, обойдёт все клетки полоски. Докажите, что число 2<i>n</i> + 1 простое.
К каждому члену некоторой конечной последовательности подряд идущих натуральных чисел приписали справа по две цифры и получили последовательность квадратов подряд идущих натуральных чисел. Какое наибольшее число членов могла иметь эта последовательность?
Для натурального <i>a</i> обозначим через <i>P</i>(<i>a</i>) наибольший простой делитель числа <i>a</i>² + 1.
Докажите, что существует бесконечно много таких троек различных натуральных чисел <i>a, b, c</i>, что <i>P</i>(<i>a</i>) = <i>P</i>(<i>b</i>) = <i>P</i>(<i>c</i>).
Решите уравнение в целых числах: <i>n</i><sup>4</sup> + 2<i>n</i>² + 2<i>n</i>² + 2<i>n</i> + 1 = <i>m</i>².
На доске записаны числа: 4, 14, 24, ... , 94, 104. Можно ли стереть сначала одно число из записанных, потом стереть ещё два, потом – ещё три, и, наконец, стереть ещё четыре числа так, чтобы после каждого стирания сумма оставшихся на доске чисел делилась на 11?
Даны 2011 ненулевых целых чисел. Известно, что сумма любого из них с произведением оставшихся 2010 чисел отрицательна. Докажите, что если произвольным образом разбить все данные числа на две группы и перемножить числа в группах, то сумма двух полученных произведений также будет отрицательной.
Известно, что <i>A</i> – наибольшее из чисел, являющихся произведением нескольких натуральных чисел, сумма которых равна 2011.
На какую наибольшую степень тройки делится число <i>A</i>?
Докажите, что уравнение <i>l</i>² + <i>m</i>² = <i>n</i>² + 3 имеет бесконечно много решений в натуральных числах.
Найдите все пары натуральных чисел (<i>а, b</i>), для которых выполняется равенство НОК(<i>а, b</i>) – НОД(<i>а, b</i>) = <sup><i>ab</i></sup>/<sub>5</sub>.
В клетках квадратной таблицы 10×10 стоят ненулевые цифры. В каждой строчке и в каждом столбце из всех стоящих там цифр произвольным образом составлено десятизначное число. Может ли оказаться так, что из двадцати получившихся чисел ровно одно не делится на 3?
а) Есть кусок сыра. Разрешается выбрать любое положительное (возможно, нецелое) число <i>a</i> ≠ 1, и разрезать этот кусок в отношении 1 : <i>a</i> по весу, затем разрезать в том же отношении любой из имеющихся кусков, и т. д. Можно ли действовать так, что после конечного числа разрезаний весь сыр удастся разложить на две кучки равного веса?
б) Тот же вопрос, но выбирается положительное рациональное <i>a</i> ≠ 1.