Олимпиадные задачи по теме «Многочлены» для 6-8 класса - сложность 2 с решениями
Многочлены
НазадМожно ли в записи 2013² – 2012² – ... – 2² – 1² некоторые минусы заменить на плюсы так, чтобы значение получившегося выражения стало равно 2013?
Два приведённых квадратных трёхчлена имеют общий корень, а дискриминант их суммы равен сумме их дискриминантов.
Докажите, что тогда дискриминант хотя бы одного из этих двух трёхчленов равен нулю.
В кафе Цветочного города автомат выдаёт пончик, если ввести в него число <i>x</i>, при котором значение выражения <i>x</i>² – 9<i>x</i> + 13 отрицательно. А если ввести число <i>x</i>, при котором отрицательно значение выражения <i>x</i>² + <i>x</i> – 5, то автомат выдаёт сироп. Сможет ли Незнайка, введя в автомат всего одно число, получить и то и другое?
<i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>) – приведённые квадратные трёхчлены, имеющие по два различных корня. Оказалось, что сумма двух чисел, получаемых при подстановке корней трёхчлена <i>P</i>(<i>x</i>) в трёхчлен <i>Q</i>(<i>x</i>), равна сумме двух чисел, получаемых при подстановке корней трёхчлена <i>Q</i>(<i>x</i>) в трёхчлен <i>P</i>(<i>x</i>). Докажите, что дискриминанты трёхчленов <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>) равны.
Ненулевые числа <i>a</i> и <i>b</i> таковы, что уравнение <i>a</i>(<i>x – a</i>)² + <i>b</i>(<i>x – b</i>)² = 0 имеет единственное решение. Докажите, что |<i>a| = |b</i>|.
Могут ли все корни уравнений <i>x</i>² – <i>px + q</i> = 0 и <i>x</i>² – (<i>p</i> + 1)<i>x + q</i> = 0 оказаться целыми числами, если:
а) <i>q</i> > 0;
б) <i>q</i> < 0?
На координатной плоскости задан график функции <i>y = kx + b</i> (см. рисунок). В той же координатной плоскости схематически постройте график функции <i>y = kx</i>² + <i>bx</i>. <div align="center"><img src="/storage/problem-media/116806/problem_116806_img_2.gif"></div>
Известно, что модули корней каждого из двух квадратных трёхчленов <i>x</i>² + <i>ax + b</i> и <i>x</i>² + <i>cx + d</i> меньше 10. Может ли трёхчлен <img align="absmiddle" src="/storage/problem-media/116803/problem_116803_img_2.gif"> иметь корни, модули которых не меньше 10?
Натуральные числа <i>а, b, c</i> и <i>d</i> таковы, что <i>ab = cd</i>. Может ли число <i>a + b + c + d</i> оказаться простым?
Для чисел <i>а, b</i> и <i>с</i>, отличных от нуля, выполняется равенство: <i>a</i>²(<i>b + c – a</i>) = <i>b</i>²(<i>c + a – b</i>) = <i>c</i>²(<i>a + b – c</i>). Следует ли из этого, что <i>а = b = c</i>?
Является ли простым число 2011·2111 + 2500?
Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?
На доске написаны девять приведённых квадратных трёхчленов: <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>, <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>, ..., <i>x</i>² + <i>a</i><sub>9</sub><i>x + b</i><sub>9</sub>. Известно, что последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>9</sub> и <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b</i><sub>9</sub> – арифметические прогрессии. Оказалось, что сумма все...
Петя выбрал натуральное число <i>a</i> > 1 и выписал на доску пятнадцать чисел 1 + <i>a</i>, 1 + <i>a</i>², 1 + <i>a</i>³, ..., 1 + <i>a</i><sup>15</sup>. Затем он стёр несколько чисел так, что каждые два оставшихся числа взаимно просты. Какое наибольшее количество чисел могло остаться на доске?
Числа <i>a</i> и <i>b</i> таковы, что <i>a</i>³ – <i>b</i>³ = 2, <i>a</i><sup>5</sup> – <i>b</i><sup>5</sup> ≥ 4. Докажите, что <i>a</i>² + <i>b</i>² ≥ 2.
Найдите все такие тройки простых чисел <i>p, q, r</i>, что четвёртая степень каждого из них, уменьшенная на 1, делится на произведение двух остальных.
Сколько существует таких натуральных <i>n</i>, не превосходящих 2012, что сумма 1<sup><i>n</i></sup> + 2<sup><i>n</i></sup> + 3<sup><i>n</i></sup> + 4<sup><i>n</i></sup> оканчивается на 0?
Известно, что выражения 4<i>k</i> + 5 и 9<i>k</i> + 4 при некоторых натуральных значениях <i>k</i> одновременно являются точными квадратами. Какие значения может принимать выражение 7<i>k</i> + 4 при тех же значениях <i>k</i>?
На доске записано 101 число: 1², 2², ..., 101². За одну операцию разрешается стереть любые два числа, а вместо них записать модуль их разности.
Какое наименьшее число может получиться в результате 100 операций?
Существуют ли такие целые числа <i>x, y</i> и <i>z</i>, для которых выполняется равенство: (<i>x – y</i>)³ + (<i>y – z</i>)³ + (<i>z – x</i>)³ = 2011?
Найдите наименьшее натуральное <i>n</i>, при котором число <i>А = n</i>³ + 12<i>n</i>² + 15<i>n</i> + 180 делится на 23.
Известно, что 5(<i>а</i> – 1) = <i>b + a</i>². Сравните числа <i>а</i> и <i>b</i>.
Существуют ли такие натуральные <i>x</i> и <i>y</i>, что <i>x</i><sup>4</sup> – <i>y</i><sup>4</sup> = <i>x</i>³ + <i>y</i>³?
В треугольник <i>ABC</i> со сторонами <i>AB</i> = 18 и <i>BC</i> = 12 вписан параллелограмм <i>BKLM</i>, причём точки <i>K, L</i> и <i>M</i> лежат на сторонах <i>AB, AC</i> и <i>BC</i> соответственно. Известно, что площадь параллелограмма составляет <sup>4</sup>/<sub>9</sub> площади треугольника <i>ABC</i>. Найдите стороны параллелограмма.
Известно, что сумма любых двух из трёх квадратных трёхчленов <i>x</i>² + <i>ax + b</i>, <i>x</i>² + <i>cx + d</i>, <i>x</i>² + <i>ex + f</i> не имеет корней.
Может ли сумма всех этих трёхчленов иметь корни?