Олимпиадные задачи по математике для 8 класса - сложность 2 с решениями
Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов. <div align="center"><img src="/storage/problem-media/116965/problem_116965_img_2.gif"></div>
Вокруг стола пустили пакет с семечками. Первый взял 1 семечку, второй – 2, третий – 3 и так далее: каждый следующий брал на одну семечку больше. Известно, что на втором круге было взято в сумме на 100 семечек больше, чем на первом. Сколько человек сидело за столом?
Кое-кто в классе смотрит футбол, кое-кто – мультики, но нет таких, кто не смотрит ни то, ни другое. У любителей мультиков средний балл по математике меньше 4, у любителей футбола – тоже меньше 4. Может ли средний балл всего класса по математике быть больше 4?
Разрежьте квадрат 4×4 по линиям сетки на 9 прямоугольников так, чтобы равные прямоугольники не соприкасались ни сторонами, ни вершинами.
В ряд лежит чётное число груш. Массы любых двух соседних груш отличаются не более чем на 1 г. Докажите, что можно все груши разложить по две в одинаковые пакеты и выложить пакеты в ряд так, чтобы массы любых двух соседних пакетов тоже отличались не более чем на 1 г.
На плоскости отмечены 100 точек, никакие три из которых не лежат на одной прямой. Саша разбивает точки на пары, после чего соединяет точки в каждой из пар отрезком. Всегда ли он может это сделать так, чтобы каждые два отрезка пересекались?
На доске написаны четыре трёхзначных числа, в сумме дающие 2012. Для записи их всех были использованы только две различные цифры.
Приведите пример таких чисел.
В какое наибольшее количество цветов можно раскрасить клетки шахматной доски 8×8 так, чтобы каждая клетка граничила по стороне хотя бы с двумя клетками того же цвета?
а) Есть кусок сыра. Разрешается выбрать любое положительное (возможно, нецелое) число <i>a</i> ≠ 1, и разрезать этот кусок в отношении 1 : <i>a</i> по весу, затем разрезать в том же отношении любой из имеющихся кусков, и т. д. Можно ли действовать так, что после конечного числа разрезаний весь сыр удастся разложить на две кучки равного веса?
б) Тот же вопрос, но выбирается положительное рациональное <i>a</i> ≠ 1.
В наборе несколько гирь, все веса которых различны. Известно, что если положить любую пару гирь на левую чашу, можно весы уравновесить, положив на правую чашу одну или несколько гирь из остальных. Найдите наименьшее возможное число гирь в наборе.
Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 1°.
Найдите сумму абсцисс точек пересечения этих прямых с прямой <i>y</i> = 100 – <i>x</i>.
Прямоугольник разбили на 121 прямоугольную клетку десятью вертикальными и десятью горизонтальными прямыми. У 111 клеток периметры целые.
Докажите, что и у остальных десяти клеток периметры целые.
На столе лежит картонный круг радиуса 5 см. Петя, пока возможно, прикладывает к кругу снаружи картонные квадраты со стороной 5 см так, чтобы выполнялись условия:
1) у каждого квадрата одна вершина лежит на границе круга;
2) квадраты не пересекаются;
3) каждый следующий квадрат касается предыдущего вершиной к вершине.
Определите, сколько квадратов может выложить Петя, и докажите, что последний и первый квадрат тоже коснутся вершинами.
На шахматной доске 8×8 стоит кубик (нижняя грань совпадает с одной из клеток доски). Его прокатили по доске, перекатывая через рёбра, так, что кубик побывал на всех клетках (на некоторых, возможно, несколько раз). Могло ли случиться, что одна из его граней ни разу не лежала на доске?
На столе в виде треугольника выложены28монет одинакового размера (рис.). Известно, что суммарная масса любой тройки монет, которые попарно касаются друг друга, равна10 г. Найдите суммарную массу всех18 монет на границе треугольника.
<center><i> <img align="absmiddle" src="/storage/problem-media/115493/problem_115493_img_2.gif"> </i></center>
а) Поросенок Наф-Наф придумал, как сложить параллелепипед из одинаковых кубиков и оклеить его тремя квадратами без щелей и наложений. Сделайте это и вы. б) А может ли Наф-Наф добиться, чтобы при этом каждые два квадрата граничили друг с другом?
Маленькие детки кушали конфетки. Каждый съел на 7 конфет меньше, чем все остальные вместе, но все же больше одной конфеты.
Сколько всего конфет было съедено?
На доске написано:
<i>В этом предложении ... процентов цифр делятся на 2, ... процентов цифр делятся на 3, а ... процентов цифр делятся и на 2 и на 3. </i>
Вставьте вместо многоточий какие-нибудь целые числа так, чтобы написанное на доске утверждение стало верным.
Несколько спортсменов стартовали одновременно с одного и того же конца прямой беговой дорожки. Их скорости различны, но постоянны. Добежав до конца дорожки, спортсмен мгновенно разворачивается и бежит обратно, затем разворачивается на другом конце, и т.д. В какой-то момент все спортсмены снова оказались в одной точке. Докажите, что такие встречи всех будут продолжаться и впредь.
В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.
Какое наибольшее число белых и чёрных фишек можно расставить на шахматной доске так, чтобы на каждой горизонтали и на каждой вертикали белых фишек было ровно в два раза больше, чем чёрных?
На доске записаны числа 1, 2, 3, ..., 1000. Двое по очереди стирают по одному числу. Игра заканчивается, когда на доске остаются два числа. Если их сумма делится на 3, то побеждает тот, кто делал первый ход, если нет – то его партнер. Кто из них выиграет при правильной игре?
Можно ли так расставить фишки в клетках доски 8×8, чтобы в каждых двух столбцах количество фишек было одинаковым, а в каждых двух строках – различным?
Назовем билет с номером от 000000 до 999999<i>отличным</i>, если разность некоторых двух соседних цифр его номера равна 5. Найдите число отличных билетов.
Можно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом?