Олимпиадные задачи по математике для 10 класса - сложность 2 с решениями

Алёша написал на доске пять целых чисел – коэффициенты и корни квадратного трёхчлена. Боря стёр одно из них. Остались числа 2, 3, 4, –5. Восстановите стёртое число.

Петя отметил на плоскости несколько (больше двух) точек, все расстояния между которыми различны. Пару отмеченных точек  (<i>A, B</i>)  назовём <i>необычной</i>, если <i>A</i> – самая дальняя от <i>B</i> отмеченная точка, а <i>B</i> – ближайшая к <i>A</i> отмеченная точка (не считая самой точки <i>A</i>). Какое наибольшее возможное количество необычных пар могло получиться у Пети?

Доска 2010×2011 покрыта доминошками 2×1; некоторые из них лежат горизонтально, некоторые – вертикально.

Докажите, что граница горизонтальных доминошек с вертикальными имеет чётную длину.

В турнире каждый участник встретился с каждым из остальных один раз. Каждую встречу судил один арбитр, и все арбитры судили разное количество встреч. Игрок Иванов утверждает, что все его встречи судили разные арбитры. То же самое утверждают о себе игроки Петров и Сидоров. Может ли быть, что никто из них не ошибается?

Hа плоскости даны две окружности <i>C</i><sub>1</sub> и <i>C</i><sub>2</sub> с центрами <i>O</i><sub>1</sub> и <i>O</i><sub>2</sub> и радиусами 2<i>R</i> и <i>R</i> соответственно (<i>O</i><sub>1</sub><i>O</i><sub>2</sub> <i>></i> 3<i>R</i>). Hайдите геометрическое место центров тяжести треугольников, у которых одна вершина лежит на <i>C</i><sub>1</sub>, а две другие — на <i>C</i><sub>2</sub>.

Bыпуклый <i>n</i>-угольник <i>P</i>, где  <i>n</i> > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.

Каковы возможные значения <i>n</i>, если <i>n</i>-угольник вписанный?

Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу.

Через каждую вершину неравнобедренного треугольника <i>ABC</i> проведён отрезок, разбивающий его на два треугольника с равными периметрами.

Верно ли, что все эти отрезки имеют разные длины?

Даны окружность и не лежащая на ней точка. Из всех треугольников, одна вершина которых совпадает с данной точкой, а две другие лежат на окружности, выбран треугольник наибольшей площади. Докажите, что он равнобедренный.

Выпуклый многоугольник описан около окружности. Точки касания его сторон с окружностью образуют многоугольник с таким же набором углов (порядок углов может быть другим). Верно ли, что многоугольник правильный?

Треугольник разрезан на несколько (не менее двух) треугольников. Один из них равнобедренный (не равносторонний), а остальные – равносторонние. Найдите углы исходного треугольника.

Решите систему уравнений  (<i>n</i> > 2)      <img align="middle" src="/storage/problem-media/111649/problem_111649_img_2.gif">   <img align="middle" src="/storage/problem-media/111649/problem_111649_img_3.gif">     <i>x</i><sub>1</sub> – <i>x</i><sub>2</sub> = 1.

Существуют ли такие три числа, что если их поставить в одном порядке в качестве коэффициентов квадратного трёхчлена, то он имеет два положительных корня, а если в другом – два отрицательных?

Существуют ли такие натуральные числа <i>x</i> и <i>y</i>, что  <i>x</i>² + <i>x</i> + 1  является натуральной степенью <i>y</i>, а  <i>y</i>² + <i>y</i> + 1  – натуральной степенью <i>x</i>?

<i>a</i> и <i>b</i> – натуральные числа. Известно, что  <i>a</i>² + <i>b</i>²  делится на <i>ab</i>. Докажите, что  <i>a = b</i>.

На плоскости расположены круг и правильный 100-угольник, имеющие одинаковые площади. Какое наибольшее количество вершин 100-угольника может находиться внутри круга (не на границе)?

Дан многочлен с целыми коэффициентами, имеющий хотя бы один целый корень. Наибольший общий делитель всех его целых корней равен $1$. Докажите, что если старший коэффициент многочлена равен $1$, то наибольший общий делитель остальных коэффициентов тоже равен $1$.

В классе $N$ школьников, среди них образовалось несколько компаний.<i>Общительностью</i>школьника назовём количество людей в наибольшей компании, куда он входит (если ни в одну не входит, то общительность равна $1$). Оказалось, что у всех девочек в классе общительность разная. Каково наибольшее возможное количество девочек в классе?

В ряд записаны $5$ натуральных чисел. Каждое из них, кроме первого, — наименьшее натуральное число, на которое не делится предыдущее. Могут ли все пять чисел быть различными?

Найдите все пары натуральных чисел $m$ и $n$, для которых $m!! = n!$. (Двойной факториал $m!!$ – это произведение всех натуральных чисел, не превосходящих $m$ и имеющих ту же чётность, что $m$. Например, 5!! = 15, 6!! = 48).

Если Вася делит пирог или кусок пирога на две части, то всегда делает их равными по массе. А если делит на большее число частей, то может сделать их какими угодно, но обязательно все разной массы. За несколько таких дележей Вася разрезал пирог на $N$ частей. При каждом ли $N$ ≥ 10 все части могли получиться равными по массе? (Объединять части нельзя.)

Если Вася делит пирог или кусок пирога на две части, то всегда делает их равными по массе. А если делит на большее число частей, то может сделать их какими угодно, но обязательно все разной массы. За несколько таких дележей Вася разрезал пирог на 17 частей. Могли ли все части оказаться равными по массе? (Объединять части нельзя.)

Барону Мюнхгаузену сообщили о многочлене $P(x) = a_nx^n + \dots + a_1x + a_0$ лишь то, что многочлен $P(x) + P(-x)$ имеет ровно 45 различных действительных корней. Барон, не зная даже, чему равно $n$, утверждает, что может определить один из коэффициентов $a_n$, ..., $a_1$, $a_0$ (готов указать его номер и значение). Не ошибается ли барон?

Даны три попарно различные точки на прямой. Сколько существует равнобедренных треугольников, в которых они являются (в каком-нибудь порядке) центрами описанной, вписанной и вневписанной окружностей?

При каком наибольшем натуральном $m$ число $m! \cdot 2022!$ будет факториалом натурального числа?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка