Олимпиадные задачи по математике для 10-11 класса - сложность 2 с решениями

Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными?

Даны различные натуральные числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>14</sub>.  На доску выписаны все 196 чисел вида  <i>a<sub>k</sub></i> + <i>a<sub>l</sub></i>,  где  1 ≤ <i>k</i>, <i>l</i> ≤ 14.  Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)?

На сторонах правильного 2009-угольника отметили по точке. Эти точки являются вершинами 2009-угольника площади <i>S</i>. Каждую из отмеченных точек отразили относительно середины стороны, на которой эта точка лежит. Докажите, что 2009-угольник с вершинами в отражённых точках также имеет площадь <i>S</i>.

Диагонали выпуклого четырёхугольника <i>ABCD</i> перпендикулярны и пересекаются в точке <i>O</i>. Известно, что сумма радиусов окружностей, вписанных в треугольники <i>AOB</i> и <i>COD</i>, равна сумме радиусов окружностей, вписанных в треугольники <i>BOC</i> и <i>DOA</i>. Докажите, что

  а) четырёхугольник <i>ABCD</i> – описанный;

  б) четырёхугольник <i>ABCD</i> симметричен относительно одной из своих диагоналей.

Можно ли поверхность куба оклеить без пропусков и наложений тремя треугольниками?

На плоскости даны три красные точки, три синие точки и ещё точка <i>O</i>, лежащая как внутри треугольника с красными вершинами, так и внутри треугольника с синими вершинами, причём расстояние от <i>O</i> до любой красной точки меньше расстояния от <i>O</i> до любой синей точки. Могут ли все красные и все синие точки лежать на одной и той же окружности?

<i>n</i> бумажных кругов радиуса 1 уложены на плоскость таким образом, что их границы проходят через одну точку, причём эта точка находится внутри области, покрытой кругами. Эта область представляет собой многоугольник с криволинейными сторонами. Найдите его периметр. <div align="center"><img src="/storage/problem-media/98412/problem_98412_img_2.gif"></div>

Дан вписанный четырехугольник $ABCD$. Пусть $E=AC\cap BD$, $F=AD\cap BC$. Биссектрисы углов $AFB$ и $AEB$ пересекают $CD$ в точках $X, Y$. Докажите, что точки $A, B, X, Y$ лежат на одной окружности.

Пусть $O$ – центр описанной окружности треугольника $ABC$. На стороне $BC$ нашлись точки $X$ и $Y$ такие, что $AX=BX$ и $AY=CY$. Докажите, что окружность, описанная около треугольника $AXY$, проходит через центры описанных окружностей треугольников $AOB$ и $AOC$.

Через вершины треугольника $ABC$ проведены параллельные прямые $l_a$, $l_b$, $l_c$. Пусть прямая $a$ симметрична высоте $AH_a$ относительно $l_a$. Аналогично определяем $b$, $c$. Докажите, что $a$, $b$, $c$ пересекаются в одной точке.

Две окружности с центрами $O_1$ и $O_2$ касаются внешним образом в точке $T$. К ним проведена общая внешняя касательная, касающаяся первой окружности в точке $A$, а второй – в точке $B$. Общая касательная к окружностям, проведённая в точке $T$, пересекает прямую $AB$ в точке $M$. Пусть $AC$ – диаметр первой окружности. Докажите, что отрезки $CM$ и $AO_2$ перпендикулярны.

На плоскости отметили 30 точек, никакие три из которых не лежат на одной прямой, и провели семь красных прямых, не проходящих через отмеченные точки. Могло ли случиться, что каждый отрезок, соединяющий какие-то две отмеченные точки, пересекается хоть с одной красной прямой?

 Фиксированы окружность, точка <i>A</i> на ней и точка <i>K</i> вне окружности. Секущая, проходящая через <i>K</i>, пересекает окружность в точках <i>P</i> и <i>Q</i>. Докажите, что ортоцентры треугольников <i>APQ</i> лежат на фиксированной окружности.

Существуют ли такие 99 последовательных натуральных чисел, что наименьшее из них делится на 100, следующее делится на 99, третье делится на 98, ..., последнее делится на 2?

Изначально на доске записаны несколько натуральных чисел (больше одного). Затем каждую минуту на доску дописывается число, равное сумме квадратов всех уже записанных на ней чисел (так, если бы на доске изначально были записаны числа 1, 2, 2, то на первой минуте было бы дописано число  1² + 2² + 2²). Докажите, что сотое дописанное число имеет хотя бы 100 различных простых делителей.

На окружности отмечено 100 точек. Эти точки нумеруются числами от 1 до 100 в некотором порядке.

  а) Докажите, что при любой нумерации точки можно разбить на пары так, чтобы отрезки, соединяющие точки в парах, не пересекались, а все суммы в парах были нечётны.

  б) Верно ли, что при любой нумерации можно разбить точки на пары так, чтобы отрезки, соединяющие точки в парах, не пересекались, а все суммы в парах были чётны?

В пространстве даны три отрезка <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>B</i><sub>1</sub><i>B</i><sub>2</sub> и <i>C</i><sub>1</sub><i>C</i><sub>2</sub>, не лежащие в одной плоскости и пересекающиеся в одной точке <i>P</i>. Обозначим через <i>O<sub>ijk</sub></i> центр сферы, проходящей через точки <i>A<sub>i</sub>, B<sub>j</sub>, C<sub>k</sub></i> и <i>P</i>. Докажите, что прямые <i>O</i><sub>111</sub><i>O</i><sub>222</sub>, <i>O</i><sub>112</sub><i>O</i><sub>2...

Окружность ω касается сторон угла <i>BAC</i> в точках <i>B</i> и <i>C</i>. Прямая <i>l</i> пересекает отрезки <i>AB</i> и <i>AC</i> в точках <i>K</i> и <i>L</i> соответственно. Окружность ω пересекает <i>l</i> в точках <i>P</i> и <i>Q</i>. Точки <i>S</i> и <i>T</i> выбраны на отрезке <i>BC</i> так, что  <i>KS || AC</i>  и  <i>LT || AB</i>.  Докажите, что точки <i>P, Q, S</i> и <i>T</i> лежат на одной окружности.

На стороне <i>AB</i> выпуклого четырёхугольника <i>ABCD</i> взяты точки <i>K</i> и <i>L</i> (точка<i>K</i> лежит между <i>A</i> и <i>L</i>), а на стороне <i>CD</i> взяты точки <i>M</i> и <i>N</i> (точка <i>M</i> между <i>C</i> и <i>N</i>). Известно, что  <i>AK = KN = DN</i>  и  <i>BL = BC = CM</i>.  Докажите, что если <i>BCNK</i> – вписанный четырёхугольник, то и <i>ADML</i> тоже вписан.

Каждая из двух равных окружностей ω<sub>1</sub> и ω<sub>2</sub> проходит через центр другой. Треугольник <i>ABC</i> вписан в ω<sub>1</sub>, а прямые <i>AC, BC</i> касаются ω<sub>2</sub>.

Докажите, что  cos∠<i>A</i> + cos∠<i>B</i> = 1.

а) Дан выпуклый четырёхугольник <i>ABCD</i>. Пусть  <i>r</i><sub>1</sub> ≤ <i>r</i><sub>2</sub> ≤ <i>r</i><sub>3</sub> ≤ <i>r</i><sub>4</sub>  – взятые в порядке возрастания радиусы вписанных окружностей треугольников <i>ABC, BCD, CDA, DAB</i>. Может ли оказаться, что  <i>r</i><sub>4</sub> > 2<i>r</i><sub>3</sub>? б) В выпуклом четырёхугольнике <i>ABCD</i> диагонали пересекаются в точке <i>E</i>. Пусть  <i>r</i><sub>1</sub> ≤ <i>r</i><sub>2</sub> ≤ <i>r</i><sub>3</sub> ≤ <i>r</i><sub>4</sub>  – взятые в...

Какое наименьшее число соединений требуется для организации проводной сети связи из 10 узлов, чтобы при выходе из строя любых двух узлов связи сохранялась возможность передачи информации между любыми двумя оставшимися (хотя бы по цепочке через другие узлы)?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка