Олимпиадные задачи по математике для 8-10 класса - сложность 3 с решениями
Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, <i>A</i><sub>3</sub>, ... так, чтобы при любом натуральном <i>k</i> сумма всех чисел, входящих в подмножество <i>A<sub>k</sub></i>, равнялась <i>k</i> + 2013?
На плоскости даны 10 прямых общего положения. При каждой точке пересечения выбирается наименьший угол, образованный проходящими через неё прямыми. Найдите наибольшую возможную сумму всех этих углов.
Восемь клеток одной диагонали шахматной доски назовём забором. Ладья ходит по доске, не наступая на одну и ту же клетку дважды и не наступая на клетки забора (промежуточные клетки не считаются посещёнными). Какое наибольшее число прыжков через забор может совершить ладья?
Известно, что существует число<i> S </i>, такое, что если<i> a+b+c+d=S </i>и<i> <img src="/storage/problem-media/110174/problem_110174_img_2.gif">+<img src="/storage/problem-media/110174/problem_110174_img_3.gif">+<img src="/storage/problem-media/110174/problem_110174_img_4.gif">+<img src="/storage/problem-media/110174/problem_110174_img_5.gif">=S </i>(<i> a </i>,<i> b </i>,<i> c </i>,<i> d </i>отличны от нуля и единицы), то<i> <img src="/storage/problem-media/110174/problem_110174_img_6.gif">+ <img src="/storage/problem-media/110174/problem_110174_img_7.gif">+ <img src="/storage/problem-media/11017...
Можно ли числа 1, 2, ..., 10 расставить в ряд в некотором порядке так, чтобы каждое из них, начиная со второго, отличалось от предыдущего на целое число процентов?
В первые 1999 ячеек компьютера в указанном порядке записаны числа: 1, 2, 4,2<i></i>1998. Два программиста по очереди уменьшают за один ход на единицу числа в пяти различных ячейках. Если в одной из ячеек появляется отрицательное число, то компьютер ломается, и сломавший его оплачивает ремонт. Кто из программистов может уберечь себя от финансовых потерь независимо от ходов партнера, и как он должен для этого действовать?
Найдите все такие простые числа <i>p</i>, что число <i>p</i>² + 11 имеет ровно шесть различных делителей (включая единицу и само число).
Рассматриваются такие квадратичные функции <i>f</i>(<i>x</i>) = <i>ax</i>² + <i>bx + c</i>, что <i>a < b</i> и <i>f</i>(<i>x</i>) ≥ 0 для всех <i>x</i>.
Какое наименьшее значение может принимать выражение <sup><i>a+b+c</i></sup>/<sub><i>b–a</i></sub> ?
Найдите все такие простые числа <i>p, q, r</i> и <i>s</i>, что их сумма – простое число. а числа <i>p</i>² + <i>qs</i> и <i>p</i>² + <i>qr</i> – квадраты натуральных чисел. (Числа <i>p, q, r</i> и <i>s</i> предполагаются различными.)
На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого.)
Из квадратной доски 1000×1000 клеток удалены четыре прямоугольника 2×994 (см. рис.). <center> <img src="/storage/problem-media/109542/problem_109542_img_2.gif"> </center>На клетке, помеченной звездочкой, стоит<i>кентавр</i>– фигура, которая за один ход может перемещаться на одну клетку вверх, влево или по диагонали вправо и вверх. Двое игроков ходят кентавром по очереди. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре?
Можно ли замостить доску 2003×2003 доминошками 1×2, которые разрешается располагать только горизонтально, и прямоугольниками 1×3, которые разрешается располагать только вертикально? (Две стороны доски условно считаются горизонтальными, а две другие – вертикальными.)
Внутри треугольника <i>ABC</i> взята точка <i>P</i> так, что ∠<i>ABP</i> = ∠<i>ACP</i>, а ∠<i>CBP</i> = ∠<i>CAP</i>. Докажите, что <i>P</i> – точка пересечения высот треугольника <i>ABC</i>.
В ряд стоят 23 коробочки с шариками, причём для каждого числа <i>n</i> от 1 до 23 есть коробочка, в которой ровно <i>n</i> шариков. За одну операцию можно переложить в любую коробочку еще столько же шариков, сколько в ней уже есть, из какой-нибудь другой коробочки, в которой шариков больше. Всегда ли можно такими операциями добиться, чтобы в первой коробочке оказался 1 шарик, во второй – 2 шарика, ..., в 23-й – 23 шарика?
Правильный (2<i>n</i>+1)-угольник разбили диагоналями на 2<i>n</i> – 1 треугольник. Докажите, что среди них по крайней мере три равнобедренных.
У первоклассника имеется сто карточек, на которых написаны натуральные числа от 1 до 100, а также большой запас знаков "+" и "=". Какое наибольшее число верных равенств он может составить? (Каждая карточка используется не более одного раза, в каждом равенстве может быть только один знак "=", переворачивать карточки и прикладывать их для получения новых чисел нельзя.)
В весеннем туре турнира городов 2000 года старшеклассникам страны <i>N</i> было предложено шесть задач. Каждую задачу решило ровно 1000 школьников, но никакие два школьника не решили вместе все шесть задач. Каково наименьшее возможное число старшеклассников страны <i>N</i>, принявших участие в весеннем туре?
Каждая сторона правильного треугольника разбита на 10 равных отрезков, и через все точки деления проведены прямые, параллельные сторонам. Данный треугольник разбился на 100 маленьких треугольников-клеток. Треугольники, расположенные между двумя соседними параллельными прямыми, образуют полоску. Какое максимальное число клеток можно отметить, чтобы никакие две отмеченные клетки не принадлежали одной полоске ни по одному из трёх направлений?
Доска 7×7 либо пустая, либо на ней лежит "по клеткам" невидимый корабль 2×2. Разрешается расположить в некоторых клетках доски по детектору, а потом одновременно их включить. Включённый детектор сигнализирует, если его клетка занята кораблём. Какого наименьшего числа детекторов хватит, чтобы по их показаниям гарантированно определить, есть ли на доске корабль, и если да, то какие клетки он занимает?
Петя взял 20 последовательных натуральных чисел, записал их друг за другом в некотором порядке и получил число <i>M</i>. Вася взял 21 последовательное натуральное число, записал их друг за другом в некотором порядке и получил число <i>N</i>. Могло ли случиться, что <i>M = N</i>?
Есть клетчатая доска 2015×2015. Дима ставит в <i>k</i> клеток по детектору. Затем Коля располагает на доске клетчатый корабль в форме квадрата 1500×1500. Детектор в клетке сообщает Диме, накрыта эта клетка кораблём или нет. При каком наименьшем <i>k</i> Дима может расположить детекторы так, чтобы гарантированно восстановить расположение корабля?
Петя выбрал 10 последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
Может ли сумма наименьшего общего кратного всех красных чисел и наименьшего общего кратного всех синих чисел оканчиваться на 2016?
Петя выбрал несколько последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
Может ли сумма наименьшего общего кратного всех красных чисел и наименьшего общего кратного всех синих чисел являться степенью двойки?
Какое наибольшее число коней можно расставить на шахматной доске так, чтобы каждый бил не более семи из остальных?
Правильный треугольник со стороной 3 разбит на девять треугольных клеток, как показано на рисунке. В этих клетках изначально записаны нули. За один ход можно выбрать два числа, находящиеся в соседних по стороне клетках, и либо прибавить к обоим по единице, либо вычесть из обоих по единице. Петя хочет сделать несколько ходов так, чтобы после этого в клетках оказались записаны в некотором порядке последовательные натуральные числа <i>n, n</i> + 1, ..., <i>n</i> + 8. При каких <i>n</i> он сможет это сделать? <div align="center"><img src="/storage/problem-media/65113/problem_65113_img_2.gif"></div>