Назад

Олимпиадная задача: Замощение доски 2003×2003 доминошками и прямоугольниками (8-9 класс)

Задача

Можно ли замостить доску 2003×2003 доминошками 1×2, которые разрешается располагать только горизонтально, и прямоугольниками 1×3, которые разрешается располагать только вертикально? (Две стороны доски условно считаются горизонтальными, а две другие – вертикальными.)

Решение

Решение 1:Запишем во все клетки нечётных столбцов цифру 1, а во все клетки чётных столбцов – цифру 2. Сумма цифр в каждом прямоугольнике 1×2 или 3×1 кратна 3. Но сумма цифр на всей доске не кратна 3. Поэтому разбить её на такие прямоугольники нельзя.

Решение 2:Пусть замощение возможно. Поскольку доска содержит нечётное число клеток, в нём участвует нечётное число прямоугольников 3×1. Окрасим в чёрный цвет 1-ю, 4-ю, 7-ю, ..., 2002-ю горизонтали доски (через две) – всего 668 горизонталей. Количество чёрных клеток чётно. Но каждый прямоугольник 1×2 содержит чётное число чёрных клеток (0 или 2), а каждый прямоугольник 3×1 – ровно одну чёрную клетку, то есть общее число чёрных клеток нечётно. Противоречие.

Ответ

Нельзя.

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет