Олимпиадные задачи по математике - сложность 2 с решениями
Oпределите отношение сторон прямоугольника, описанного около уголка из пяти клеток.
На сторонах единичного квадрата как на гипотенузах построены во внешнюю сторону прямоугольные треугольники. Пусть <i>A, B, C</i> и <i>D</i> – вершины их прямых углов, а <i>O</i><sub>1</sub>, <i>O</i><sub>2</sub>, <i>O</i><sub>3</sub> и <i>O</i><sub>4</sub> – центры вписанных окружностей этих треугольников. Докажите, что
а) площадь четырёхугольника <i>ABCD</i> не превосходит 2;
б) площадь четырёхугольника <i>O</i><sub>1</sub><i>O</i><sub>2</sub><i>O</i><sub>3</sub><i>O</i><sub>4</sub> не превосходит 1.
Под каким углом видна из вершины прямого угла прямоугольного треугольника проекция на гипотенузу вписанной окружности?
Пусть <i>f</i>(<i>x</i>) = <i>x</i>² + 12<i>x</i> + 30. Решите уравнение <i>f</i>(<i>f</i>(<i>f</i>(<i>f</i>(<i>f</i>(<i>x</i>))))) = 0.
Расставьте на шахматной доске 32 коня так, чтобы каждый из них бил ровно двух других.
На стороне $CD$ прямоугольника $ABCD$ взята точка $K$. Из вершины $B$ опустили перпендикуляр $BH$ на отрезок $AK$. Оказалось, что отрезки $AK$ и $BH$ делят прямоугольник на три части, в каждую из которых можно вписать круг (см. рисунок). Докажите, что если круги, касающиеся стороны $CD$, равны, то и третий круг им равен.<img src="/storage/problem-media/67500/problem_67500_img_2.jpg">
В равностороннем треугольнике $ABC$ проведены отрезки $ED$ и $GF$, так что образовались два равносторонних треугольника $ADE$ и $GFC$ со сторонами 1 и 100 (точки $E$ и $G$ лежат на стороне $AC$). Отрезки $EF$ и $DG$ пересекаются в точке $O$, причём угол $EOG$ равен $120^\circ$. Чему равна сторона треугольника $ABC$?<img src="/storage/problem-media/67482/problem_67482_img_2.png">
Из прямого угла прямоугольного треугольника опущена высота, и в образовавшиеся треугольники вписаны два квадрата (как на рисунке).<img src="/storage/problem-media/67473/problem_67473_img_2.png">Чему может быть равна сумма площадей этих квадратов, если длина биссектрисы прямого угла треугольника равна $1$?
На столе лежит колода из 36 карт, верхняя из которых червонный туз. За одно «перемешивание» фокусник снимает верхнюю половину колоды и кладёт рядом с нижней, а затем делает так, чтобы карты двух стопок чередовались: сначала нижняя карта левой или правой стопки, потом первая снизу другой стопки, потом вторая снизу карта первой стопки, вторая снизу карта другой стопки, и так далее (см. рисунок).<img src="/storage/problem-media/67472/problem_67472_img_2.png">Какое наименьшее число перемешиваний нужно сделать фокуснику, чтобы червонный туз оказался нижней картой колоды? При каждом перемешивании то, из какой половины карта окажется снизу, фокусник выбирает сам.
Между двумя восьмёрками в числе 88 вписали несколько нулей. Докажите, что можно всегда дописать слева в начало нового числа ещё несколько цифр так, чтобы получилось число, которое является полным кубом.
На совместный симпозиум лжецов (всегда лгут) и правдолюбов (всегда говорят правду) собрались 100 участников, среди которых не все лжецы и не все правдолюбы. Каждые два участника либо знакомы, либо незнакомы друг с другом. Каждый ответил «да» или «нет» на вопрос «Знакомы ли вы?» про каждого из остальных. Какое наименьшее количество ответов «да» могло быть получено?
В треугольнике $ABC$ с прямым углом $C$ провели высоту $CH$. Окружность, проходящая через точки $C$ и $H$, повторно пересекает отрезки $AC$, $CB$ и $BH$ в точках $Q$, $P$ и $R$ соответственно. Отрезки $HP$ и $CR$ пересекаются в точке $T$. Что больше: площадь треугольника $CPT$ или сумма площадей треугольников $CQH$ и $HTR$?<img src="/storage/problem-media/67451/problem_67451_img_2.png">
Можно ли расставить девять различных целых чисел в клетки таблицы $3 \times 3$ так, чтобы произведение чисел в каждой строке равнялось $2025$ и произведение чисел в каждом столбце тоже равнялось $2025$?
На совместный симпозиум лжецов (всегда лгут) и правдолюбов (всегда говорят правду) собрались 12 участников, среди которых не все лжецы и не все правдолюбы. Каждые два участника либо знакомы, либо незнакомы друг с другом. Каждый ответил «да» или «нет» на вопрос «Знакомы ли вы?» про каждого из остальных. Какое наименьшее количество ответов «да» могло быть получено?
Произвольный прямоугольник разбит на прямоугольные треугольники так, как показано на рисунке ниже. В каждый треугольник вписан квадрат со стороной, лежащей на гипотенузе. Что больше: площадь самого большого квадрата или сумма площадей трёх остальных квадратов?<img width="200" src="/storage/problem-media/67424/problem_67424_img_2.png">
В последовательности действительных чисел $a_1$, $a_2$, ... каждое число, начиная с третьего, равно полусумме двух предыдущих. Докажите, что все параболы вида $y = x^2 + a_nx + a_{n+1}$ (где $n$ = 1, 2, 3, ...) имеют общую точку.
Два пирата делят 25 золотых монет разного достоинства, выложенные в виде квадрата 5×5. Пираты по очереди берут по одной монете с краю (монету можно взять, если слева, или справа, или снизу, или сверху от неё нет другой). Верно ли, что первый пират всегда может действовать так, чтобы гарантированно получить хотя бы половину суммарной добычи?
Шахматную доску 8×8 перекрасили в несколько цветов (каждую клетку – в один цвет). Оказалось, что если две клетки – соседние по диагонали или отстоят друг от друга на ход коня, то они обязательно разного цвета. Какое наименьшее число цветов могло быть использовано?
У математика есть набор из 16 гирь: 1/3 кг, 1/4 кг, 1/5 кг, ..., 1/18 кг. На левой чаше весов лежит груз 1 кг. Какие гири положить на правую чашу весов, чтобы уравновесить груз? (Достаточно привести один пример.)
Квадрат $10\times10$ клеток надо покрыть полосками $1\times9$ клеток. Сделайте это так, чтобы каждая клетка была покрыта одной или двумя полосками, но никакой прямоугольник $1\times2$ не был покрыт в два слоя. (Полоски кладут по линиям сетки горизонтально или вертикально, полоски не должны выходить за границу квадрата.)
Из 54 красных и 54 белых брусков 1×1×2 сложили куб 6×6×6. Какое наибольшее количество красных клеточек могло оказаться на поверхности куба?
Вершины $M$, $N$, $K$ прямоугольника $KLMN$ лежат на сторонах $AB$, $BC$, $CA$ соответственно правильного треугольника $ABC$ так, что $AM=2$, $KC=1$, а вершина $L$ лежит вне треугольника. Найдите угол $KMN$.
Правильный треугольник сложен из одинаковых прямоугольных (красных) и одинаковых равнобедренных (зелёных) треугольников так, как показано на рисунке. Чему равна площадь правильного треугольника, если площадь зелёного треугольника равна 1? При необходимости округлите ответ до двух знаков после запятой.
<img src="/storage/problem-media/67329/problem_67329_img_2.png">
Чемпионат по футболу проходил в два круга. В каждом круге каждая команда сыграла с каждой один матч (за победу даётся три очка, за ничью одно, за поражение ноль). Оказалось, что все команды вместе набрали в первом круге 60 от общей суммы всех очков за два круга. Известно также, что победитель чемпионата набрал во втором круге в 30 раз меньше очков, чем все команды вместе в первом круге. Сколько команд участвовало в турнире?
У математика есть 19 различных гирь, массы которых в килограммах равны $\ln 2$, $\ln 3$, $\ln 4, \ldots, \ln 20$, и абсолютно точные двухчашечные весы. Он положил несколько гирь на весы так, что установилось равновесие. Какое наибольшее число гирь могло оказаться на весах?