Олимпиадные задачи из источника «Заочная олимпиада по теории вероятностей и статистике» для 7 класса

В турнире участвуют 100 борцов, все разной силы. В любом поединке двух борцов всегда побеждает тот, кто сильнее. В первом туре борцы разбились на случайные пары и провели поединки. Для второго тура борцы ещё раз разбиваются на случайные пары соперников (может случиться, что какие-то пары повторятся). Приз получает тот, кто выиграет оба поединка. Найдите:   а) наименьшее возможное число призёров турнира;   б) математическое ожидание числа призеров турнира.

На берёзе сидели белые и чёрные вороны – всего их было 50. Белые точно были, а чёрных было не меньше, чем белых. На дубе тоже сидели белые и чёрные вороны, и было их всего 50. На дубе чёрных тоже было не меньше, чем белых или столько же, а может быть, даже на одну меньше. Одна случайная ворона перелетела с берёзы на дуб, а через некоторое время другая (может быть, та же самая) случайная ворона перелетела с дуба на берёзу. Что более вероятно: что количество белых ворон на берёзе стало таким же, как было сначала, или что оно изменилось?

  В школьном совете выбирают председателя. Кандидатов четверо: А, Б, В и Г. Предложена специальная процедура – каждый член совета должен записать на специальном листке кандидатов в порядке своих предпочтений. Например, АВГБ значит, что член совета на первое место ставит А, не очень возражает против В и считает, что он лучше, чем Г, зато меньше всего хотел бы видеть председателем Б. Первое место даёт кандидату 3 очка, второе – 2 очка, третье – 1 очко, а четвёртое – 0 очков. После сбора всех листков избирательная комиссия суммирует очки у каждого кандидата. Победит тот, у кого наибольшая сумма очков.

  После голосования выяснилось, что В (который набрал меньше всех очков) снимает свою кандидатуру в связи с переходом в другую школу. Заново голосовать не стали, а просто вычеркнули В из все...

Игровой круг в телевикторине "Что? Где? Когда?" разбит на 13 одинаковых секторов. Секторы пронумерованы числами от 1 до 13. В каждом секторе в начале игры лежит конверт с вопросом. Игроки выбирают случайный сектор с помощью волчка со стрелкой. Если этот сектор уже выпадал прежде, то конверта в нём уже нет, и тогда играет следующий по часовой стрелке сектор. Если он тоже пуст, – следующий и т.д., пока не встретится непустой сектор. До перерыва игроки разыграли шесть секторов.

  а) Что более вероятно: что в числе разыгранных есть сектор №1 или что среди разыгранных есть сектор №8?

  б) Найдите вероятность того, что в результате оказались разыграны подряд шесть секторов с номерами от 1 до 6.

В красном ящике 100 красных шаров, а в зелёном ящике – 100 зелёных шаров. Восемь красных шаров переложили в зелёный ящик, а потом столько же шаров переложили из зелёного ящика в красный. Шары в ящиках хорошенько перемешали. Что теперь больше: вероятность вытащить наудачу из красного ящика зелёный шар или из зелёного ящика красный?

В Солнечной долине 10 посёлков. Однажды статистики долины провели исследование численности жителей в посёлках. Обнаружили следующее.

  1. Число жителей в любых двух посёлках долины отличается не более чем на 100 человек.

  2. В посёлке Знойное ровно 1000 жителей, что превышает среднюю численность населения посёлков долины на 90 человек.

Сколько жителей в посёлке Радужный, который также расположен в Солнечной долине?

В классе у Марии Ивановны прошёл ежегодный тест по английскому языку. Оказалось, что в обеих группах А и Б средний балл понизился по сравнению с прошлым годом (см. таблицу). <div align="center"><img src="/storage/problem-media/66039/problem_66039_img_2.gif"></div>Мария Ивановна должна писать отчет, но знает, что директор школы будет недоволен, поскольку считает, что средний балл должен каждый год расти. Баллы менять нельзя, но Мария Ивановна может переводить учеников из одной группы в другую. Может ли она сделать так, что средний балл в каждой группе окажется выше, чем в прошлом году?

Горлум загадывает Бильбо девять загадок. Найдите самое вероятное из событий:

    <i>A</i> = {Бильбо отгадает больше четырёх загадок},

    <i>B</i> = {Бильбо отгадает не меньше четырёх загадок},

    <i>C</i> = {Бильбо отгадает от четырёх до восьми загадок},

    <i>D</i> = {Бильбо не отгадает меньше семи загадок}.

Имеется резинка и стеклянные шарики-бусины: четыре одинаковых красных, две одинаковых синих и две одинаковых зелёных. Нужно все восемь бусин нанизать на резинку последовательно, чтобы получился браслет. Сколько различных браслетов можно составить так, чтобы бусины одного цвета не оказались рядом? (Считайте, что застёжки нет, а узелок на резинке незаметен.)

В классе не больше 40 человек, и среди них есть те, кого зовут Коля. Вероятность того, что случайно выбранный ученик выше всех Коль, равна <sup>2</sup>/<sub>5</sub>, а вероятность того, что случайно выбранный ученик ниже всех Коль, равна <sup>3</sup>/<sub>7</sub>. Какое наибольшее количество Коль может быть в классе?

Найдите медиану набора длин:  2 м 30 см,  250 мм,  0,02 км,  0,002 км,  2700 см,  2800 мм,  240 см.

В одном из сообществ одной социальной сети шло голосование: какой из котят на фото самый симпатичный. К утру голоса распределились так: <div align="center"><img src="/storage/problem-media/66033/problem_66033_img_2.gif"></div>К вечеру голосов прибавилось, но все новые голоса были за Барсика. В результате у Дымка осталось только 16% голосов. Сколько процентов голосов стало вечером у Васьки?

Стрелок стреляет по трём мишеням до тех пор, пока не собьёт все. Вероятность попадания при одном выстреле равна <i>p</i>.

  a) Найдите вероятность того, что потребуется ровно 5 выстрелов.

  б) Найдите математическое ожидание числа выстрелов.

В выпуклом шестиугольнике независимо друг от друга выбраны две случайные диагонали.

Найдите вероятность того, что эти диагонали пересекаются внутри шестиугольника (внутри – то есть не в вершине).

К юбилею Санкт-Петербургских математических олимпиад монетный двор отчеканил три юбилейные монеты. Одна монета получилась правильно, у второй монеты на обеих сторонах оказалось два орла, а у третьей обе стороны – решки. Директор монетного двора не глядя выбрал одну из этих трёх монет и бросил её наудачу. Выпал орёл. Чему равна вероятность того, что на второй стороне этой монеты тоже орёл?

Василий Петров выполняет задание по английскому языку. В этом задании есть 10 английских выражений и их переводы на русский в случайном порядке. Нужно установить верные соответствия между выражениями и их переводами. За каждое правильно установленное соответствие даётся 1 балл. Таким образом, можно получить от 0 до 10 баллов. Вася ничего не знает, поэтому выбирает варианты наугад. Найдите вероятность того, что он получит ровно 9 баллов.

  К концу полугодия у Василия Петрова в журнале стояли такие отметки по математике: 4, 1, 2, 5, 2 Перед тем как выставить полугодовую отметку, учитель математики сказал Васе:

  – Вася, ты можешь выбрать метод, как вывести твою отметку за полугодие. Предлагаю два варианта. Метод А: среднее арифметическое текущих отметок с округлением до целого. Метод Б: медиана текущих отметок.

  Лучший метод для Васи – это такой метод, который даст Васе в полугодии наибольшую отметку. Какой метод для Васи лучший?

  Городской муниципалитет Затонска принял правило: отопление в домах следует включать не раньше 26 октября, но только если средняя температура в течение трёх предыдущих дней ниже 8°C. В городе два района – Прибрежный и Заречный.

  В Прибрежном районе правило поняли так: если три дня подряд средняя дневная температура каждый день ниже 8°C, то на четвёртый день нужно включить отопление, если этот день случился 26 октября или позже.

  В Заречном районе правило поняли иначе: если средняя температура за трёхдневный период ниже 8°C, то на четвёртый день нужно включить отопление, если этот день не раньше 26 октября.

  В таблице показана средняя дневная температура за несколько дней октября. <div align="center"><img src="/storage/problem-media/65765/problem_65765_...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка