Олимпиадные задачи из источника «2010-2011» для 2-9 класса

На столе лежит куча из более чем <i>n</i>² камней. Петя и Вася по очереди берут камни из кучи, первым берёт Петя. За один ход можно брать любое простое число камней, меньшее <i>n</i>, либо любое кратное <i>n</i> число камней, либо один камень. Докажите, что Петя может действовать так, чтобы взять последний камень независимо от действий Васи.

На стороне <i>BC</i> параллелограмма <i>ABCD</i>  (∠<i>A</i> < 90°)  отмечена точка <i>T</i> так, что треугольник <i>ATD</i> – остроугольный. Пусть <i>O</i><sub>1</sub>, <i>O</i><sub>2</sub> и <i>O</i><sub>3</sub> – центры описанных окружностей треугольников <i>ABT</i>, <i>DAT</i> и <i>CDT</i> соответственно (см. рисунок). <div align="center"><img src="/storage/problem-media/116647/problem_116647_img_2.gif"></div>Докажите, что ортоцентр треугольника<i>O</i><sub>1</sub><i>O</i><sub>2</sub><i>O</i><sub>3</sub>лежит...

Натуральные числа <i>d</i> и  <i>d' > d</i>  – делители натурального числа <i>n</i>. Докажите, что  <i>d' > d</i> + <sup><i>d</i>²</sup>/<sub><i>n</i></sub>.

Клетчатый квадрат 2010×2010 разрезан на трёхклеточные уголки. Докажите, что можно в каждом уголке отметить по клетке так, чтобы в каждой вертикали и в каждой горизонтали было поровну отмеченных клеток.

Для натуральных чисел  <i>a</i> > <i>b</i> > 1  определим последовательность  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ...  формулой   <img align="absmiddle" src="/storage/problem-media/116644/problem_116644_img_2.gif"> .   Найдите наименьшее <i>d</i>, при котором ни при каких <i>a</i> и <i>b</i> эта последовательность не содержит <i>d</i> последовательных членов, являющихся простыми числами.

Дан остроугольный треугольник <i>ABC</i>. На продолжениях <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub> его высот за точки <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> выбраны соответственно точки <i>P</i> и <i>Q</i> так, что угол <i>PAQ</i> – прямой. Пусть <i>AF</i> – высота треугольника <i>APQ</i>. Докажите, что угол <i>BFC</i> – прямой.

Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

Периметр треугольника <i>ABC</i> равен 4. На лучах <i>AB</i> и <i>AC</i> отмечены точки <i>X</i> и <i>Y</i> так, что  <i>AX = AY</i> = 1.  Отрезки <i>BC</i> и <i>XY</i> пересекаются в точке <i>M</i>. Докажите, что периметр одного из треугольников <i>ABM</i> и <i>ACM</i> равен 2.

Назовём компанию <i>k-неразбиваемой</i>, если при любом разбиении её на <i>k</i> групп в одной из групп найдутся два знакомых человека. Дана 3-неразбиваемая компания, в которой нет четырёх попарно знакомых человек. Докажите, что её можно разделить на две компании, одна из которых 2-неразбиваемая, а другая – 1-неразбиваемая.

На доске написаны девять приведённых квадратных трёхчленов:  <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>,  <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>,  ...,  <i>x</i>² + <i>a</i><sub>9</sub><i>x + b</i><sub>9</sub>. Известно, что последовательности  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>9</sub>  и  <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b</i><sub>9</sub>  – арифметические прогрессии. Оказалось, что сумма все...

В каждой клетке таблицы, состоящей из 10 столбцов и <i>n</i> строк, записана цифра. Известно, что для каждой строки <i>A</i> и любых двух столбцов найдётся строка, отличающаяся от <i>A</i> ровно в этих двух столбцах. Докажите, что  <i>n</i> ≥ 512.

В некоторых клетках доски 100×100 стоит по фишке. Назовём клетку <i>красивой</i>, если в соседних с ней по стороне клетках стоит чётное число фишек.

Может ли ровно одна клетка доски быть красивой?

Пусть <i>ABC</i> – правильный треугольник. На его стороне <i>AC</i> выбрана точка <i>T</i>, а на дугах <i>AB</i> и <i>BC</i> его описанной окружности выбраны точки <i>M</i> и <i>N</i> соответственно так, что  <i>MT || BC</i>  и  <i>NT || AB</i>.  Отрезки <i>AN</i> и <i>MT</i> пересекаются в точке <i>X</i>, а отрезки <i>CM</i> и <i>NT</i> – в точке <i>Y</i>. Докажите, что периметры многоугольников <i>AXYC</i> и <i>XMBNY</i> равны.

У Пети и Коли в тетрадях записаны по два числа; изначально – это числа 1 и 2 у Пети, 3 и 4 – у Коли. Раз в минуту Петя составляет квадратный трёхчлен <i>f</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа, а Коля – квадратный трёхчлен <i>g</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа. Если уравнение  <i>f</i>(<i>x</i>) = <i>g</i>(<i>x</i>)  имеет два различных корня, то один из мальчиков заменяет свою пару чисел на эти корни; иначе ничего не происходит. Какое второе число могло оказаться у Пети в тетради в тот момент, когда первое стало равным 5?

Для некоторых 2011 натуральных чисел выписали на доску все их 2011·1005 попарных сумм.

Могло ли оказаться, что ровно треть выписанных сумм делится на 3, и ещё ровно треть из них дают остаток 1 при делении на 3?

Существуют ли три взаимно простых в совокупности натуральных числа, квадрат каждого из которых делится на сумму двух оставшихся?

На доске нарисован выпуклый 2011-угольник. Петя последовательно проводит в нём диагонали так, чтобы каждая вновь проведённая диагональ пересекала по внутренним точкам не более одной из проведённых ранее диагоналей. Какое наибольшее количество диагоналей может провести Петя?

Дан остроугольный треугольник <i>ABC</i>. Окружность, проходящая через вершину <i>B</i> и центр <i>O</i> его описанной окружности, вторично пересекает стороны <i>BC</i> и <i>BA</i> в точках <i>P</i> и <i>Q</i> соответственно. Докажите, что ортоцентр треугольника <i>POQ</i> лежит на прямой <i>AC</i>.

Приведённый квадратный трёхчлен <i>P</i>(<i>x</i>) таков, что многочлены <i>P</i>(<i>x</i>) и <i>P</i>(<i>P</i>(<i>P</i>(<i>x</i>))) имеют общий корень. Докажите, что  <i>P</i>(0)<i>P</i>(1) = 0.

В неравнобедренном остроугольном треугольнике <i>ABC</i> точки <i>C</i><sub>0</sub> и <i>B</i><sub>0</sub> – середины сторон <i>AB</i> и <i>AC</i> соответственно, <i>O</i> – центр описанной окружности, <i>H</i> – точка пересечения высот. Прямые <i>BH</i> и <i>OC</i><sub>0</sub> пересекаются в точке <i>P</i>, а прямые <i>CH</i> и <i>OB</i><sub>0</sub> – в точке <i>Q</i>. Оказалось, что четырёхугольник <i>OPHQ</i> – ромб. Докажите, что точки <i>A, P</i> и <i>Q</i> лежат на одной прямой.

На доску выписаны 2011 чисел. Оказалось, что сумма каждых трёх выписанных чисел также является выписанным числом.

Какое наименьшее количество нулей может быть среди этих чисел?

Найдите все такие числа <i>a</i>, что для любого натурального <i>n</i> число  <i>an</i>(<i>n</i> + 2)(<i>n</i> + 3)(<i>n</i> + 4)  будет целым.

Ненулевые числа <i>a</i>, <i>b</i>, <i>c</i> таковы, что каждые два из трёх уравнений  <i>ax</i><sup>11</sup> + <i>bx</i><sup>4</sup> + <i>c</i> = 0,  <i>bx</i><sup>11</sup> + <i>cx</i><sup>4</sup> + <i>a</i> = 0,  <i>cx</i><sup>11</sup> + <i>ax</i><sup>4</sup> + <i>b</i> = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

Даны различные натуральные числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>14</sub>.  На доску выписаны все 196 чисел вида  <i>a<sub>k</sub></i> + <i>a<sub>l</sub></i>,  где  1 ≤ <i>k</i>, <i>l</i> ≤ 14.  Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)?

На стороне <i>AC</i> остроугольного треугольника <i>ABC</i> выбраны точки <i>M</i> и <i>K</i> так, что ∠<i>ABM</i> = ∠<i>CBK</i>.

Докажите, что центры описанных окружностей треугольников <i>ABM, ABK, CBM</i> и <i>CBK</i> лежат на одной окружности.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка