Олимпиадные задачи из источника «Региональный этап» для 11 класса
Среди натуральных чисел от 1 до 1200 выбрали 372 различных числа так, что никакие два из них не различаются на 4, 5 или 9. Докажите, что число 600 является одним из выбранных.
Точка<i> D </i>на стороне<i> BC </i>треугольника<i> ABC </i>такова, что радиусы вписанных окружностей треугольников<i> ABD </i>и<i> ACD </i>равны. Докажите, что радиусы окружностей, вневписанных в треугольники<i> ABD </i>и<i> ACD </i>, касающихся соответственно отрезков<i> BD </i>и<i> CD </i>, также равны.
При каком наименьшем $n$ для любого набора $A$ из $2007$ множеств найдется такой набор $B$ из $n$ множеств, что каждое множество набора $A$ является пересечением двух различных множеств набора $B$?
Для вещественных <i>x > y</i> > 0 и натуральных <i>n > k</i> докажите неравенство (<i>x<sup>k</sup> – y<sup>k</sup></i>)<sup><i>n</i></sup> < (<i>x<sup>n</sup> – y<sup>n</sup></i>)<sup><i>k</i></sup>.
Для положительных чисел <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i> докажите неравенство <img align="absmiddle" src="/storage/problem-media/111769/problem_111769_img_2.gif">
Назовем многогранник хорошим, если его объем (измеренный в<i> м<sup>3</sup> </i>) численно равен площади его поверхности (измеренной в<i> м<sup>2</sup> </i>). Можно ли какой-нибудь хороший тетраэдр разместить внутри какого-нибудь хорошего параллелепипеда?
На плоскости отмечено несколько точек, каждая покрашена в синий, желтый или зеленый цвет. На любом отрезке, соединяющем одноцветные точки, нет точек этого же цвета, но есть хотя бы одна другого цвета. Каково максимально возможное число всех точек?
При каких натуральных <i>n</i> найдутся такие целые <i>a, b, c</i>, что их сумма равна нулю, а число <i>a<sup>n</sup> + b<sup>n</sup> + c<sup>n</sup></i> – простое?
На столе лежат купюры достоинством 1, 2,<i> .. </i>,2<i>n </i>тугриков. Двое ходят по очереди. Каждым ходом игрок снимает со стола две купюры, большую отдает сопернику, а меньшую забирает себе. Каждый стремится получить как можно больше денег. Сколько тугриков получит начинающий при правильной игре?
В треугольнике<i> ABC </i>на стороне<i> BC </i>выбрана точка<i> M </i>так, что точка пересечения медиан треугольника<i> ABM </i>лежит на описанной окружности треугольника<i> ACM </i>, а точка пересечения медиан треугольника<i> ACM </i>лежит на описанной окружности треугольника<i> ABM </i>. Докажите, что медианы треугольников<i> ABM </i>и<i> ACM </i>из вершины<i> M </i>равны.
Квадратные трёхчлены <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) таковы, что <i>f</i> '(<i>x</i>)<i>g</i>'(<i>x</i>) ≥ |<i>f</i>(<i>x</i>)| + |<i>g</i>(<i>x</i>)| при всех действительных <i>x</i>.
Докажите, что произведение <i>f</i>(<i>x</i>)<i>g</i>(<i>x</i>) равно квадрату некоторого трёхчлена.