Олимпиадные задачи из источника «Заключительный этап» для 5-8 класса
Плоскость разбита двумя семействами параллельных прямых на единичные квадратики. Назовем каемкой квадрата<i>n</i>×<i>n</i>, состоящего из квадратиков разбиения, объединение тех квадратиков, которые хотя бы одной из своих сторон примыкают изнутри к его границе. Докажите, что существует ровно один способ покрытия квадрата100<i>×</i>100, состоящего из квадратиков разбиения, неперекрывающимися каемками пятидесяти квадратов. (Каемки могут и не содержаться в квадрате100<i>× </i>100.)
Натуральные числа от 1 до 1000 по одному выписали на карточки, а затем накрыли этими карточками какие-то 1000 клеток прямоугольника1<i>x </i>1994. Если соседняя справа от карточки с числом<i> n </i>клетка свободна, то за один ход ее разрешается накрыть карточкой с числом<i> n+</i>1. Докажите, что нельзя сделать более полумиллиона таких ходов.
Докажите тождество <center><i> <img src="/storage/problem-media/109569/problem_109569_img_2.gif">+ <img src="/storage/problem-media/109569/problem_109569_img_3.gif">+..+ <img src="/storage/problem-media/109569/problem_109569_img_4.gif">=
<img src="/storage/problem-media/109569/problem_109569_img_5.gif">+ <img src="/storage/problem-media/109569/problem_109569_img_6.gif">+..+ <img src="/storage/problem-media/109569/problem_109569_img_7.gif">.
</i></center>
На столе лежат три кучки спичек. В первой кучке находится 100 спичек, во второй – 200, а в третьей – 300. Двое играют в такую игру. Ходят по очереди, за один ход игрок должен убрать одну из кучек, а любую из оставшихся разделить на две непустые части. Проигравшим считается тот, кто не может сделать ход. Кто выиграет при правильной игре: начинающий или его партнер?
Окружности<i> S<sub>1</sub> </i>и<i> S<sub>2</sub> </i>касаются внешним образом в точке<i> F </i>. Прямая<i> l </i>касается<i> S<sub>1</sub> </i>и<i> S<sub>2</sub> </i>в точках<i> A </i>и<i> B </i>соответственно. Прямая, параллельная прямой<i> l </i>, касается<i> S<sub>2</sub> </i>в точке<i> C </i>и пересекает<i> S<sub>1</sub> </i>в двух точках. Докажите, что точки<i> A </i>,<i> F </i>и<i> C </i>лежат на одной прямой.
Докажите, что для натуральных чисел <i>k, m</i> и <i>n</i> справедливо неравенство [<i>k, m</i>][<i>m, n</i>][<i>n, k</i>] ≥ [<i>k, m, n</i>]².
В правильном (6<i>n</i>+1)-угольнике <i>K</i> вершин покрашено в красный цвет, а остальные – в синий.
Докажите, что количество равнобедренных треугольников с одноцветными вершинами не зависит от способа раскраски.
Даны три приведённых квадратных трехчлена: <i>P</i><sub>1</sub>(<i>x</i>), <i>P</i><sub>2</sub>(<i>x</i>) и <i>P</i><sub>3</sub>(<i>x</i>). Докажите, что уравнение |<i>P</i><sub>1</sub>(<i>x</i>)| + |<i>P</i><sub>2</sub>(<i>x</i>)| = |<i>P</i><sub>3</sub>(<i>x</i>)| имеет не более восьми корней.
Игроки <i>A</i> и <i>B</i> по очереди ходят конем на шахматной доске 1994×1994. Игрок <i>A</i> может делать только горизонтальные ходы, то есть такие, при которых конь перемещается на соседнюю горизонталь. Игроку <i>B</i> разрешены только вертикальные ходы, при которых конь перемещается на соседнюю вертикаль. Игрок <i>A</i> ставит коня на поле, с которого начинается игра, и делает первый ход. При этом каждому игроку запрещено ставить коня на то поле, на котором он уже побывал в данной игре. Проигравшим считается игрок, которому некуда ходить. Докажите, что для игрока <i>A</i> существует выигрышная стратегия.
Дана последовательность натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, в которой <i>a</i><sub>1</sub> не делится на 5 и для всякого <i>n</i> <i>a</i><sub><i>n</i>+1</sub> = <i>a<sub>n</sub> + b<sub>n</sub></i>, где <i>b<sub>n</sub></i> – последняя цифра числа <i>a<sub>n</sub></i>. Докажите, что последовательность содержит бесконечно много степеней двойки.
Две окружности<i>S</i><sub>1</sub>и<i>S</i><sub>2</sub>касаются внешним образом в точке<i>F</i>. Их общая касательная касается<i>S</i><sub>1</sub>и<i>S</i><sub>2</sub>в точках<i>A</i>и<i>B</i>соответственно. Прямая, параллельная<i>AB</i>, касается окружности<i>S</i><sub>2</sub>в точке<i>C</i>и пересекает окружность<i>S</i><sub>1</sub>в точках<i>D</i>и<i>E</i>. Докажите, что общая хорда описанных окружностей треугольников<i>ABC</i>и<i>BDE</i>, проходит через точку<i>F</i>.
Даны такие натуральные числа<i>a</i>и<i>b</i>, что число <sup><i>a</i>+1</sup>/<sub><i>b</i></sub>+<sup><i>b</i>+1</sup>/<sub><i>a</i></sub> является целым. Докажите, что наибольший общий делитель чисел<i>a</i>и<i>b</i>не превосходит числа <img align="absmiddle" src="/storage/problem-media/109551/problem_109551_img_2.gif">.
Трапеция <i>ABCD</i> такова, что на её боковых сторонах <i>AD</i> и <i>BC</i> существуют такие точки <i>P</i> и <i>Q</i> соответственно, что ∠<i>APB</i> = ∠<i>CPD</i>, ∠<i>AQB</i> = ∠<i>CQD</i>.
Докажите, что точки <i>P</i> и <i>Q</i> равноудалены от точки пересечения диагоналей трапеции.