Олимпиадные задачи из источника «40 турнир (2018/2019 год)» - сложность 3 с решениями

Внутри треугольника $ABC$ на биссектрисе угла $A$ выбрана произвольная точка $J$. Лучи $BJ$ и $CJ$ пересекают стороны $AC$ и $AB$ в точках $K$ и $L$ соответственно. Касательная к описанной окружности треугольника $AKL$ в точке $A$ пересекает прямую $BC$ в точке $P$. Докажите, что $PA=PJ$.

Можно ли замостить плоскость параболами, среди которых нет равных? (Требуется, чтобы каждая точка плоскости принадлежала ровно одной параболе и чтобы ни одна парабола не переводилась ни в какую другую параболу движением.)

Луноход ездит по поверхности планеты, имеющей форму шара с длиной экватора 400 км. Планета считается полностью исследованной, если луноход побывал на расстоянии по поверхности не более 50 км от каждой точки поверхности и вернулся на базу (в исходную точку). Может ли луноход полностью исследовать планету, преодолев не более 600 км?

В таблице $n\times n$ стоят все целые числа от 1 до $n^2$, по одному в клетке. В каждой строке числа возрастают слева направо, в каждом столбце – снизу вверх. Докажите, что наименьшая возможная сумма чисел на главной диагонали, идущей сверху слева вниз направо, равна $1^2+2^2+\ldots+n^2$.

Рассмотрим на клетчатой плоскости такие ломаные с началом в точке (0, 0) и вершинами в целых точках, что каждое очередное звено идёт по сторонам клеток либо вверх, либо вправо. Каждой такой ломаной соответствует <i>червяк</i> – фигура, состоящая из клеток плоскости, имеющих хотя бы одну общую точку с этой ломаной. Докажите, что червяков, которые можно разбить на двуклеточные доминошки ровно  $n > 2$  различными способами, столько же, сколько натуральных чисел, меньших $n$ и взаимно простых с $n$. (Червяки разные, если состоят из разных наборов клеток.)

Петя и Вася играют в игру. Для каждых пяти различных переменных из набора $x_{1}, ..., x_{10}$ имеется единственная карточка, на которой записано их произведение. Петя и Вася по очереди берут по карточке, начинает Петя. По правилам игры, когда все карточки разобраны, Вася присваивает переменным значения как хочет, но так, что  $0 \leqslant x_{1} \leqslant ... \leqslant x_{10}$.  Может ли Вася гарантированно добиться того, чтобы сумма произведений на его карточках была больше, чем у Пети?

Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1.

  а) Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?

  б) А квадрат площади <sup>1</sup>/<sub>2019</sub>?

К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.

Есть 100 кучек по 400 камней в каждой. За ход Петя выбирает две кучки, удаляет из них по одному камню и получает за это столько очков, каков теперь модуль разности числа камней в этих двух кучках. Петя должен удалить все камни. Какое наибольшее суммарное количество очков он может при этом получить?

Внутри равнобедренного треугольника $ABC$ отмечена точка $K$ так, что  $CK = AB = BC$  и  ∠ <i>KAC</i> = 30°.  Найдите угол $AKB$.

В клетках квадратной таблицы $n\times n$, где  $n$ > 1,  требуется расставить различные целые числа от 1 до $n^2$ так, чтобы каждые два последовательных числа оказались в соседних по стороне клетках, а каждые два числа, дающие одинаковые остатки при делении на $n$, – в разных строках и в разных столбцах. При каких $n$ это возможно?

Каждый отрезок с концами в вершинах правильного 100-угольника покрасили – в красный цвет, если между его концами чётное число вершин, и в синий – в противном случае (в частности, все стороны 100-угольника красные). В вершинах расставили числа, сумма квадратов которых равна 1, а на отрезках – произведения чисел в концах. Затем из суммы чисел на красных отрезках вычли сумму чисел на синих. Какое наибольшее число могло получиться?

К плоскости приклеены два непересекающихся деревянных круга одинакового размера – серый и чёрный. Дан деревянный треугольник, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи треугольника, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершинах). Докажите, что прямая, содержащая биссектрису угла между серой и чёрной сторонами, всегда проходит через одну и ту же точку плоскости.

На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.

Фокусник с помощником показывают фокус. В ряд стоят 13 закрытых пустых шкатулок. Фокусник уходит, а зритель на виду у помощника прячет по монетке в любые две шкатулки по своему выбору. Затем возвращается фокусник. Помощник открывает одну шкатулку, в которой нет монетки. Далее фокусник указывает на 4 шкатулки, и их одновременно открывают. Цель фокусника – открыть обе шкатулки с монетками. Предложите способ, как договориться фокуснику с помощником, чтобы этот фокус всегда удавался. .

Три медианы треугольника разделили его углы на шесть углов, среди которых ровно $k$ больше 30°. Каково наибольшее возможное значение $k$?

Изначально на белой клетчатой плоскости конечное число клеток окрашено в чёрный цвет. На плоскости лежит бумажный клетчатый многоугольник $M$, в котором больше одной клетки. Его можно сдвигать, не поворачивая, в любом направлении на любое расстояние, но так, чтобы после сдвига он лежал "по клеткам". Если после очередного сдвига ровно одна клетка у $M$ лежит на белой клетке плоскости, эту белую клетку окрашивают в чёрный цвет и делают следующий сдвиг. Докажите, что существует такая белая клетка, которая никогда не будет окрашена в чёрный цвет, сколько бы раз мы ни сдвигали $M$ по описанным правилам.

В остроугольном неравнобедренном треугольнике $ABC$ с центром описанной окружности $O$ проведены высоты $AH_a$ и $BH_b$. Точки $X$ и $Y$ симметричны точкам $H_a$ и $H_b$ относительно середин сторон $BC$ и $CA$ соответственно. Докажите, что прямая $CO$ делит отрезок $XY$ пополам.

В виртуальном компьютерном государстве не менее двух городов. Некоторые пары городов соединены дорогой, причём из каждого города можно добраться по дорогам до любого другого (переходить с дороги на дорогу разрешается только в городах). Если при этом можно, начав движение из какого-то города и не проходя дважды по одной и той же дороге, вернуться в этот город, государство называется <i>сложным</i>, иначе – <i>простым</i>. Петя и Вася играют в такую игру. В начале игры Петя указывает на каждой дороге направление, в котором по ней можно двигаться, и помещает в один из городов туриста. Далее за ход Петя перемещает туриста по дороге в разрешённом направлении в соседний город, а Вася в ответ меняет направление одной из дорог, входящей или выходящей из города, куда попал т...

Докажите, что

  а) любое число вида  3<i>k</i> – 2,  где <i>k</i> целое, есть сумма одного квадрата и двух кубов целых чисел;

  б) любое целое число есть сумма одного квадрата и трёх кубов целых чисел.

Равнобокая трапеция $ABCD$ с основаниями $AD$ и $BC$ вписана в окружность с центром $O$. Прямая $BO$ пересекает отрезок $AD$ в точке $E$. Пусть $O_1$ и $O_2$ — центры описанных окружностей треугольников $ABE$ и $DBE$ соответственно. Докажите, что точки $O_1, O_2, O, C$ лежат на одной окружности.

Доска 7×7 либо пустая, либо на ней лежит "по клеткам" невидимый корабль 2×2. Разрешается расположить в некоторых клетках доски по детектору, а потом одновременно их включить. Включённый детектор сигнализирует, если его клетка занята кораблём. Какого наименьшего числа детекторов хватит, чтобы по их показаниям гарантированно определить, есть ли на доске корабль, и если да, то какие клетки он занимает?

Требуется записать число вида 7...7, используя только семёрки (их можно писать и по одной, и по нескольку штук подряд), причём разрешены только сложение, вычитание, умножение, деление и возведение в степень, а также скобки. Для числа 77 самая короткая запись – это просто 77. А существует ли число вида 7...7, которое можно записать по этим правилам, используя меньшее количество семёрок, чем в его десятичной записи?

На острове живут рыцари, лжецы и подпевалы; каждый знает про всех, кто из них кто. В ряд построили всех 2018 жителей острова и попросили каждого ответить "Да" или "Нет" на вопрос: "На острове рыцарей больше, чем лжецов?". Жители отвечали по очереди и так, что их слышали остальные. Рыцари отвечали правду, лжецы лгали. Каждый подпевала отвечал так же, как большинство ответивших до него, а если ответов "Да" и "Нет" было поровну, давал любой из этих ответов. Оказалось, что ответов "Да" было ровно 1009. Какое наибольшее число подпевал могло быть среди жителей острова?

Назовём девятизначное число <i>красивым</i>, если все его цифры различны. Докажите, что существует по крайней мере  а) 1000;  б) 2018 красивых чисел, каждое из которых делится на 37.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка