Олимпиадные задачи из источника «34 турнир (2012/2013 год)» для 9 класса

Петя и Вася играют в следующую игру. Петя загадывает натуральное число <i>x</i> с суммой цифр 2012. За один ход Вася выбирает любое натуральное число <i>a</i> и узнаёт у Пети сумму цифр числа  |<i>x – a</i>|.  Какое минимальное число ходов необходимо сделать Васе, чтобы гарантированно определить <i>x</i>?

а) Внутри окружности находится некоторая точка <i>A</i>. Через <i>A</i> провели две перпендикулярные прямые, которые пересекли окружность в четырёх точках.

Докажите, что центр масс этих точек не зависит от выбора таких двух прямых. б) Внутри окружности находится правильный 2<i>n</i>-угольник  (<i>n</i> > 2),  его центр <i>A</i> не обязательно совпадает с центром окружности. Лучи, выпущенные из <i>A</i> в вершины 2<i>n</i>-угольника, высекают 2<i>n</i> точек на окружности. 2<i>n</i>-угольник повернули так, что его центр остался на месте. Теперь лучи высекают 2<i>n</i> новых точек. Докажите, что их центр масс совпадает с центром масс старых 2<i>n</i> точек....

Машина ездит по кольцевой трассе по часовой стрелке. В полдень в две разных точки трассы встали два наблюдателя. К какому-то моменту машина проехала возле каждого наблюдателя не менее 30 раз. Первый наблюдатель заметил, что машина проезжала каждый следующий круг ровно на секунду быстрее, чем предыдущий. Второй заметил, что машина проезжала каждый следующий круг ровно на секунду медленнее, чем предыдущий. Докажите, что прошло не менее полутора часов.

Дан треугольник <i>ABC</i>. Пусть <i>I</i> – центр его вписанной окружности, и пусть <i>X, Y, Z</i> – центры вписанных окружностей треугольников <i>AIB, BIC</i> и <i>AIC</i> соответственно. Оказалось, что центр вписанной окружности треугольника <i>XYZ</i> совпадает с <i>I</i>. Обязательно ли тогда треугольник <i>ABC</i> равносторонний?

В некоторых клетках квадрата 11×11 стоят плюсы, причём всего плюсов чётное количество. В каждом квадратике 2×2 тоже чётное число плюсов.

Докажите, что чётно и число плюсов в 11 клетках главной диагонали квадрата.

Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 222 ореха по двум коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число <i>N</i> от 1 до 222. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую третью коробочку и предъявить Чичикову одну или две коробочки, где в сумме ровно <i>N</i> орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв.

В числе не меньше 10 разрядов, в его записи используются только две разные цифры, причём одинаковые цифры не стоят рядом.

На какую наибольшую степень двойки может делиться такое число?

В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовал хотя бы один школьник этого класса.

Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в <sup>1</sup>/<sub>20</sub> всех экскурсий.

Окружность касается сторон <i>AB, BC, CD</i> параллелограмма <i>ABCD</i> в точках <i>K, L, M</i> соответственно.

Докажите, что прямая <i>KL</i> делит пополам высоту параллелограмма, опущенную из вершины <i>C</i> на <i>AB</i>.

Таблица 10×10 заполняется по правилам игры "Сапёр": в некоторые клетки ставят по мине, а в каждую из остальных клеток записывают количество мин в клетках, соседних с данной клеткой (по стороне или вершине). Может ли увеличиться сумма всех чисел в таблице, если все "старые" мины убрать, во все ранее свободные от мин клетки поставить мины, после чего заново записать числа по правилам?

Пусть <i>C</i>(<i>n</i>) – количество различных простых делителей числа <i>n</i>. (Например,  <i>C</i>(10) = 2,  <i>C</i>(11) = 1,  <i>C</i>(12) = 2.)

Конечно или бесконечно число таких пар натуральных чисел  (<i>a, b</i>),  что  <i>a ≠ b</i>  и  <i>C</i>(<i>a + b</i>) = <i>C</i>(<i>a</i>) + <i>C</i>(<i>b</i>)?

Про группу из пяти человек известно, что:    Алеша на 1 год старше Алексеева,

   Боря на 2 года старше Борисова,

   Вася на 3 года старше Васильева,

   Гриша на 4 года старше Григорьева,

   а еще в этой группе есть Дима и Дмитриев.Кто старше и на сколько: Дима или Дмитриев?

На доске написано несколько натуральных чисел. Сумма любых двух из них – натуральная степень двойки.

Какое наибольшее число различных может быть среди чисел на доске?

Назовем приведённый квадратный трёхчлен с целыми коэффициентами <i>сносным</i>, если его корни – целые числа, а коэффициенты не превосходят по модулю 2013. Вася сложил все сносные квадратные трёхчлены. Докажите, что у него получился трёхчлен, не имеющий действительных корней.

Имеются 100 камней разного веса (одинаковых нет), к каждому приклеена этикетка с указанием его веса. Хулиган Гриша хочет переклеить этикетки так, чтобы общий вес любого набора с числом камней от 1 до 99 отличался от суммы весов, указанных на этикетках из этого набора. Всегда ли он может это сделать?

На катетах прямоугольного треугольника <i>ABC</i> с прямым углом <i>C</i> вовне построили квадраты <i>ACKL</i> и <i>BCMN</i>; <i>CE</i> – высота треугольника. Докажите, что угол <i>LEM</i> прямой.

В четырёхугольнике <i>ABCD</i> угол <i>B</i> равен 150°, угол <i>C</i> прямой, а стороны <i>AB</i> и <i>CD</i> равны.

Найдите угол между стороной <i>BC</i> и прямой, проходящей через середины сторон <i>BC</i> и <i>AD</i>.

На доске 8×8 стоят 8 не бьющих друг друга ладей. Все клетки доски распределяются во <i>владения</i> этих ладей по следующему правилу. Клетка, на которой стоит ладья, отдаётся этой ладье. Клетку, которую бьют две ладьи, получает та из ладей, которая ближе к этой клетке; если же эти две ладьи равноудалены от клетки, то каждая из них получает по полклетки. Докажите, что площади владений всех ладей одинаковы.

Даны 11 гирь разного веса (одинаковых нет), каждая весит целое число граммов. Известно, что как ни разложить гири (все или часть) на две чаши, чтобы гирь на них было не поровну, всегда перевесит чаша, на которой гирь больше. Докажите, что хотя бы одна из гирь весит более 35 граммов.

Одной операцией к числу можно либо прибавить 9, либо стереть в нём в любом месте цифру 1.

Из любого ли натурального числа <i>A</i> при помощи таких операций можно получить число <i>A</i> + 1?

(Если стирается единица в самом начале числа, а за ней сразу идут нули, то эти нули тоже стираются.)

На плоскости даны шесть точек. Известно, что их можно разбить на две тройки так, что получатся два треугольника. Всегда ли можно разбить эти точки на две тройки так, чтобы получились два треугольника, которые не имеют друг с другом никаких общих точек (ни внутри, ни на границе)?

В школе решили провести турнир по настольному теннису между математическими и гуманитарными классами. Команда гуманитарных классов состоит из <i>n</i> человек, команда математических – из <i>m</i>, причём  <i>n</i> ≠ <i>m</i>.  Так как стол для игры всего один, было решено играть следующим образом. Сначала какие-то два ученика из разных команд начинают играть между собой, а все остальные участники выстраиваются в одну общую очередь. После каждой игры человек, стоящий в очереди первым, заменяет за столом члена своей команды, который становится в конец очереди. Докажите, что рано или поздно каждый математик сыграет с каждым гуманитарием.

Для прохождения теста тысячу мудрецов выстраивают в колонну. Из колпаков с номерами от 1 до 1001 один прячут, а остальные в случайном порядке надевают на мудрецов. Каждый видит только номера на колпаках всех впереди стоящих. Далее мудрецы по порядку от заднего к переднему называют вслух целые числа. Каждое число должно быть от 1 до 1001, причём нельзя называть то, что уже было сказано. Результат теста – число мудрецов, назвавших номер своего колпака. Мудрецы заранее знали условия теста и могли договориться, как действовать.

  а) Могут ли они гарантировать результат более 500?

  б) Могут ли они гарантировать результат не менее 999?

Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений.   а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.

  б) Докажите, что таких троек найдется не менее шести (тройки, отличающиеся только порядком чисел, считаем одинаковыми).

На бесцветной плоскости покрасили три произвольные точки: одну – в красный цвет, другую – в синий, третью –` в жёлтый. Каждым ходом выбирают на плоскости любые две точки двух из этих цветов и окрашивают еще одну точку в оставшийся цвет так, чтобы эти три точки образовали равносторонний треугольник, в котором цвета вершин идут в порядке "красный, синий, жёлтый" (по часовой стрелке). При этом разрешается красить и уже окрашенную точку плоскости (считаем, что точка может иметь одновременно несколько цветов). Докажите, что сколько бы ходов ни было сделано, все точки одного цвета будут лежать на одной прямой.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка