Олимпиадные задачи из источника «28 турнир (2006/2007 год)» - сложность 2-3 с решениями
28 турнир (2006/2007 год)
НазадНа продолжении стороны <i>BC</i> треугольника <i>ABC</i> за вершину <i>B</i> отложен отрезок <i>BB'</i>, равный стороне <i>AB</i>. Биссектрисы внешних углов при вершинах <i>B</i> и <i>C</i> пересекаются в точке <i>M</i>. Докажите, что точки <i>A, B', C</i> и <i>M</i> лежат на одной окружности.
Дано натуральное число $N$. Для того чтобы найти целое число, ближайшее к $\sqrt{N}$, воспользуемся следующим способом: найдём среди квадратов натуральных чисел число $a^2$, ближайшее к числу $N$; тогда $a$ и будет искомым числом. Обязательно ли этот способ даст правильный ответ?
Выпуклая фигура <i>F</i> обладает следующим свойством: любой правильный треугольник со стороной 1 можно параллельно перенести так, что все его вершины попадут на границу <i>F</i>. Обязательно ли <i>F</i> – круг?
Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии.
На параболе <i>y = x</i>² выбраны четыре точки <i>A, B, C, D</i> так, что прямые <i>AB</i> и <i>CD</i> пересекаются на оси ординат.
Найдите абсциссу точки <i>D</i>, если абсциссы точек <i>A, B</i> и <i>C</i> равны <i>a, b</i> и <i>c</i> соответственно.
На сторонах единичного квадрата отметили точки <i>K, L, M</i> и <i>N</i> так, что прямая <i>KM</i> параллельна двум сторонам квадрата, а прямая <i>LN</i> – двум другим сторонам квадрата. Отрезок <i>KL</i> отсекает от квадрата треугольник периметра 1. Треугольник какой площади отсекает от квадрата отрезок <i>MN</i>?
Можно ли разбить какую-нибудь призму на непересекающиеся пирамиды, у каждой из которых основание лежит на одном из оснований призмы, а противоположная вершина – на другом основании призмы?
В числе <i>a</i> = 0,12457... <i>n</i>-я цифра после запятой равна цифре слева от запятой в числе <img align="absmiddle" src="/storage/problem-media/109196/problem_109196_img_2.gif"> Докажите, что α – иррациональное число.
На сторонах <i>BC, AC</i> и <i>AB</i> остроугольного треугольника <i>ABC</i> взяты точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> так, что лучи <i>A</i><sub>1</sub><i>A, B</i><sub>1</sub><i>B</i> и <i>С</i><sub>1</sub><i>C</i> являются биссектрисами углов треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>. Докажите, что <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> и <i>СС</i><sub>1</sub> – высоты тре...
Пусть <img width="120" height="41" align="absmiddle" src="/storage/problem-media/109193/problem_109193_img_2.gif"> = <img width="23" height="47" align="absmiddle" src="/storage/problem-media/109193/problem_109193_img_3.gif">, где <img width="23" height="47" align="absmiddle" src="/storage/problem-media/109193/problem_109193_img_3.gif"> – несократимая дробь.
Докажите, что неравенство <i>b</i><sub><i>n</i>+1</sub> < <i>b<sub>n</sub></i> выполнено для бесконечного числа натуральных <i>n</i>.
<i>Обёрткой</i> плоской картины размером 1×1 назовём прямоугольный лист бумаги площади 2, которым можно, не разрезая его, полностью обернуть картину с обеих сторон. Например, прямоугольник 2×1 и квадрат со стороной <img align="absmiddle" src="/storage/problem-media/109192/problem_109192_img_2.gif"> – обёртки.
а) Докажите, что есть и другие обёртки. б) Докажите, что обёрток бесконечно много.
В остроугольный треугольник вписана окружность радиуса <i>R</i>. К окружности проведены три касательные, разбивающие треугольник на три прямоугольных треугольника и шестиугольник. Периметр шестиугольника равен <i>Q</i>. Найдите сумму диаметров окружностей, вписанных в прямоугольные треугольники.
<img align="right" src="/storage/problem-media/109190/problem_109190_img_2.gif"> В квадрате 3×3 расставлены числа (см. рис.). Известно, что квадрат магический: сумма чисел в каждом столбце, в каждой строке и на каждой диагонали одна и та же. Докажите, что
а) 2(<i>a + c + g + i</i>) = <i>b + d + f + h</i> + 4<i>e</i>.
б) 2(<i>a</i>³ + <i>c</i>³ + <i>g</i>³ + <i>i</i>³) = <i>b</i>³ + <i>d</i>³ + <i>f</i> ³ + <i>h</i>³ + 4<i>e</i>³.
Попав в новую компанию, Чичиков узнавал, кто с кем знаком. А чтобы запомнить это, он рисовал окружность и изображал каждого члена компании хордой, причём хорды знакомых между собой пересекались, а незнакомых – нет. Чичиков уверен, что такой набор хорд есть для любой компании. Прав ли он? (Совпадение концов хорд считается пересечением.)
Вокруг правильного семиугольника описали окружность и вписали в него окружность. То же проделали с правильным 17-угольником. В результате каждый из многоугольников оказался расположенным в своем круговом кольце. Оказалось, что площади этих колец одинаковы. Докажите, что стороны многоугольников одинаковы.
От правильного октаэдра со стороной 1 отрезали шесть углов – пирамидок с квадратным основанием и ребром ⅓. Получился многогранник, грани которого – квадраты и правильные шестиугольники. Можно ли копиями такого многогранника замостить пространство?
Пусть <i>f</i>(<i>x</i>) – некоторый многочлен ненулевой степени.
Может ли оказаться, что уравнение <i>f</i>(<i>x</i>) = <i>a</i> при любом значении <i>a</i> имеет чётное число решений?
Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет еще одну карту, и так сколько угодно раз, пока он не скажет “стоп”. Может ли Фукс добиться того, чтобы после слова "стоп"
а) каждая карта наверняка оказалась не там, где была вначале?
б) рядом со свободным местом наверняка не было туза пик?
В выпуклом <i>n</i>-угольнике провели несколько диагоналей так, что ни в какой точке внутри многоугольника не пересеклись три или более из них. В результате многоугольник разбился на треугольники. Каково наибольшее возможное число треугольников?
Петя взял 20 последовательных натуральных чисел, записал их друг за другом в некотором порядке и получил число <i>M</i>. Вася взял 21 последовательное натуральное число, записал их друг за другом в некотором порядке и получил число <i>N</i>. Могло ли случиться, что <i>M = N</i>?
а) Торт имеет форму тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку? б) Та же задача для торта, имеющего форму треугольника с углами 20°, 30°, 130°. (Торт и коробку считайте плоскими фигурами.)
Последовательность нулей и единиц строится следующим образом: на <i>k</i>-м месте ставится ноль, если сумма цифр числа <i>k</i> чётна, и единица, если сумма цифр числа <i>k</i> нечётна. Докажите, что эта последовательность непериодична.
Прямая касается окружности в точке <i>A</i>. На прямой выбрали точку <i>B</i> и повернули отрезок <i>AB</i> на некоторый угол вокруг центра окружности, получив отрезок <i>A'B'</i>. Докажите, что прямая, проходящая через точки касания <i>A</i> и <i>A'</i>, делит пополам отрезок <i>BB'</i>.
Многочлен <i>x</i>³ + <i>px</i>² + <i>qx + r</i> имеет на интервале (0, 2) три корня. Докажите, что – 2 < <i>p + q + r</i> < 0.
Клетки доски 9×9 раскрасили в шахматном порядке в чёрный и белый цвета (угловые клетки белые). Какое наименьшее число ладей нужно поставить на эту доску, чтобы все белые клетки оказались под боем этих ладей? (Под боем ладьи считаются все клетки строки и столбца, в которых находится ладья.)