Олимпиадные задачи из источника «IX Олимпиада по геометрии имени И.Ф. Шарыгина (2013 г.)» для 2-9 класса - сложность 2 с решениями

а) Дан выпуклый четырёхугольник <i>ABCD</i>. Пусть  <i>r</i><sub>1</sub> ≤ <i>r</i><sub>2</sub> ≤ <i>r</i><sub>3</sub> ≤ <i>r</i><sub>4</sub>  – взятые в порядке возрастания радиусы вписанных окружностей треугольников <i>ABC, BCD, CDA, DAB</i>. Может ли оказаться, что  <i>r</i><sub>4</sub> > 2<i>r</i><sub>3</sub>? б) В выпуклом четырёхугольнике <i>ABCD</i> диагонали пересекаются в точке <i>E</i>. Пусть  <i>r</i><sub>1</sub> ≤ <i>r</i><sub>2</sub> ≤ <i>r</i><sub>3</sub> ≤ <i>r</i><sub>4</sub>  – взятые в...

Диагонали <i>AC, BD</i> трапеции <i>ABCD</i> пересекаются в точке <i>P</i>. Описанные окружности треугольников <i>ABP, CDP</i> пересекают прямую <i>AD</i> в точках <i>X, Y</i>. Точка <i>M</i> – середина <i>XY</i>. Докажите, что  <i>BM = CM</i>.

В равнобедренном треугольнике <i>ABC</i>  (<i>AC = BC</i>)  угол при вершине <i>C</i> равен 20°. Биссектрисы углов <i>A</i> и <i>B</i> пересекают боковые стороны треугольника соответственно в точках <i>A</i><sub>1</sub> и <i>B</i><sub>1</sub>. Докажите, что треугольник <i>A</i><sub>1</sub><i>OB</i><sub>1</sub> (где <i>O</i> – центр описанной окружности треугольника <i>ABC</i>) является равносторонним.

В треугольнике <i>ABC  AB = BC</i>. Из точки <i>E</i> на стороне <i>AB</i> опущен перпендикуляр <i>ED</i> на <i>BC</i>. Оказалось, что  <i>AE = ED</i>.  Найдите угол <i>DAC</i>.

Через вершину <i>B</i> правильного треугольника <i>ABC</i> проведена прямая <i>l</i>. Окружность ω<sub><i>a</i></sub> с центром <i>I<sub>a</sub></i> касается стороны <i>BC</i> в точке <i>A</i><sub>1</sub> и прямых <i>l</i> и <i>AC</i>. Окружность ω<sub><i>c</i></sub> с центром <i>I<sub>c</sub></i> касается стороны <i>BA</i> в точке <i>C</i><sub>1</sub> и прямых <i>l</i> и <i>AC</i>. Докажите, что ортоцентр треугольника <i>A</i><sub>1</sub><i>BC</i><sub>1</sub> лежит на прямой <i>I<sub&g...

Длина каждой стороны выпуклого четырёхугольника <i>ABCD</i> не меньше 1 и не больше 2. Его диагонали пересекаются в точке <i>O</i>.

Докажите, что <i>S<sub>AOB</sub> + S<sub>COD</sub></i> ≤ 2(<i>S<sub>AOD</sub> + S<sub>BOC</sub></i>).

Две окружности ω<sub>1</sub> и ω<sub>2</sub> с центрами <i>O</i><sub>1</sub> и <i>O</i><sub>2</sub> пересекаются в точках <i>A</i> и <i>B</i>. Точки <i>C</i> и <i>D</i>, лежащие соответственно на ω<sub>1</sub> и ω<sub>2</sub> по разные стороны от прямой <i>AB</i>, равноудалены от этой прямой. Докажите, что точки <i>C</i> и <i>D</i> равноудалены от середины отрезка <i>O</i><sub>1</sub><i>O</i><sub>2</sub>.

Пятиугольник <i>ABCDE</i>, все углы которого тупые, вписан в окружность ω. Продолжения сторон <i>AB</i> и <i>CD</i> пересекаются в точке <i>E</i><sub>1</sub>; продолжения сторон <i>BC</i> и <i>DE</i> – в точке <i>A</i><sub>1</sub>. Касательная, проведённая в точке <i>B</i> к описанной окружности треугольника <i>BE</i><sub>1</sub><i>C</i>, пересекает ω в точке <i>B</i><sub>1</sub>; аналогично определяется точка <i>D</i><sub>1</sub>. Докажите, что  <i>B</i><sub>1</sub><i>D</i><sub>1</sub> || <i>AE</i>.

На отрезке <i>AB</i> построена дуга α (см. рис.). Окружность ω касается отрезка <i>AB</i> в точке <i>T</i> и пересекает α в точках <i>C</i> и <i>D</i>. Лучи <i>AC</i> и <i>TD</i> пересекаются в точке <i>E</i>, лучи <i>BD</i> и <i>TC</i> – в точке <i>F</i>. Докажите, что прямые <i>EF</i> и <i>AB</i> параллельны.<div align="center"><img src="/storage/problem-media/64390/problem_64390_img_2.png"></div>

Высота <i>AA'</i>, медиана <i>BB'</i> и биссектриса <i>CC'</i> треугольника <i>ABC</i> пересекаются в точке <i>K</i>. Известно, что  <i>A'K = B'K</i>. Докажите, что и отрезок <i>C'K</i> имеет ту же длину.

В пятиугольнике <i>ABCDE</i> углы <i>ABC</i> и <i>AED</i> – прямые,  <i>AB = AE</i>  и  <i>BC = CD = DE</i>.  Диагонали <i>BD</i> и <i>CE</i> пересекаются в точке <i>F</i>.

Докажите, что  <i>FA = AB</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка