Олимпиадные задачи из источника «1964 год» - сложность 2 с решениями
Из точки<i>O</i>на плоскости проведено несколько векторов, сумма длин которых равна 4. Доказать, что можно выбрать несколько векторов (или, быть может, один вектор), длина суммы которых больше 1.
Доказать, что любое чётное число 2<i>n</i>$\ge$0 может быть единственным образом представлено в виде2<i>n</i>= (<i>x</i>+<i>y</i>)<sup>2</sup>+ 3<i>x</i>+<i>y</i>, где<i>x</i>и<i>y</i>— целые неотрицательные числа.
На квадратном поле размерами99×99, разграфленном на клетки размерами1×1, играют двое. Первый игрок ставит крестик на центр поля; вслед за этим второй игрок может поставить нолик на любую из восьми клеток, окружающих крестик первого игрока. После этого первый ставит крестиктна любое из полей рядом с уже занятыми и т.д. Первый игрок выигрывает, если ему удастся поставить крестик на любую угловую клетку. Доказать, что при любой игре второго игрока первый всегда может выиграть.
При каких натуральных<i>a</i>существуют такие натуральные числа<i>x</i>и<i>y</i>, что(<i>x</i>+<i>y</i>)<sup>2</sup>+ 3<i>x</i>+<i>y</i>= 2<i>a</i>?
В квадрате со стороной длины 1 выбрано 102 точки, из которых никакие три не лежат на одной прямой. Доказать, что найдётся треугольник с вершинами в этих точках, площадь которого меньше, чем 1/100.
Собрались 2<i>n</i>человек, каждый из которых знаком не менее чем с<i>n</i>присутствующими. Доказать, что можно выбрать из них четырёх человек и рассадить их за круглым столом так, что при этом каждый будет сидеть рядом со своими знакомыми (<i>n</i>$\ge$2).
На отрезке <i>AB</i> выбрана произвольно точка <i>C</i> и на отрезках <i>AB, AC</i> и <i>BC</i>, как на диаметрах, построены окружности Ω<sub>1</sub>, Ω<sub>2</sub> и Ω<sub>3</sub>. Через точку <i>C</i> проводится произвольная прямая, пересекающая окружность Ω<sub>1</sub> в точках <i>P</i> и <i>Q</i>, а окружности Ω<sub>2</sub> и Ω<sub>3</sub> в точках <i>R</i> и <i>S</i> соответственно. Доказать, что <i>PR = QS</i>.
Известно, что при любом целом <i>K</i> ≠ 27 число <i>a – K</i><sup>1964</sup> делится без остатка на 27 – <i>K</i>. Найти <i>a</i>.
Число<i>N</i>является точным квадратом и не заканчивается нулём. После зачёркивания у этого числа двух последних цифр снова получится точный квадрат. Найти наибольшее число<i>N</i>с таким свойством.
В четырёхугольнике <i>ABCD</i> опущены перпендикуляры AM и CP на диагональ <i>BD</i>, а также <i>BN</i> и <i>DQ</i> на диагональ <i>AC</i>.
Доказать, что четырёхугольники <i>ABCD</i> и <i>MNPQ</i> подобны.
См.<a href="http://www.problems.ru/view_problem_details_new.php?id=78518">задачу 4 для 8 класса</a>. Кроме того, доказать, что если длины отрезков<i>a</i><sub>1</sub>,...,<i>a</i><sub>6</sub>удовлетворяют соотношениям:<i>a</i><sub>1</sub>-<i>a</i><sub>4</sub>=<i>a</i><sub>5</sub>-<i>a</i><sub>2</sub>=<i>a</i><sub>3</sub>-<i>a</i><sub>6</sub>, то из этих отрезков можно построить равноугольный шестиугольник.
Известно, что при любом целом <i>K</i> ≠ 27 число <i>a – K</i>³ делится на 27 – <i>K</i>. Найти <i>a</i>.
Доказать, что произведение двух последовательных натуральных чисел не является степенью никакого целого числа.
Решить в положительных числах систему:<div align="CENTER"> $\displaystyle \left{\vphantom{ \begin{array}{rcl} x^y&=&z,\ y^z&=&x,\ z^x&=&y. \end{array} }\right.$$\displaystyle \begin{array}{rcl} x^y&=&z,\ y^z&=&x,\ z^x&=&y. \end{array}$ </div>
Рассмотрим суммы цифр всех чисел от 1 до 1000000 включительно. У полученных чисел вновь рассмотрим сумму цифр и так далее, пока не получим миллион однозначных чисел. Каких чисел больше среди них – единиц или двоек?
В шестиугольнике<i>ABCDEF</i>все углы равны. Доказать, что длины сторон такого шестиугольника удовлетворяют соотношениям:<i>a</i><sub>1</sub>-<i>a</i><sub>4</sub>=<i>a</i><sub>5</sub>-<i>a</i><sub>2</sub>=<i>a</i><sub>3</sub>-<i>a</i><sub>6</sub>.
Найти все такие натуральные числа <i>n</i>, что число (<i>n</i> – 1)! не делится на <i>n</i>².
Последовательность <i>a</i><sub>0</sub>, <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... образована по закону: <i>a</i><sub>0</sub> = <i>a</i><sub>1</sub> = 1, <i>a</i><sub><i>n</i>+1</sub> = <i>a<sub>n</sub>a</i><sub><i>n</i>–1</sub> + 1. Доказать, что число <i>a</i><sub>1964</sub> не делится на 4.
Доказать, что сумма цифр числа, являющегося точным квадратом, не может равняться 5.
На данной окружности выбраны диаметрально противоположные точки<i>A</i>и<i>B</i>и третья точка<i>C</i>. Касательная, проведённая к окружности в точке<i>A</i>, и прямая<i>BC</i>пересекаются в точке<i>M</i>.
Доказать, что касательная, проведённая к окружности в точке<i>C</i>, делит пополам отрезок<i>AM</i>.