Олимпиадные задачи из источника «1957 год» для 8 класса
Два равных диска насажены на одну ось. На окружности каждого из них по кругу на одинаковых расстояниях в произвольном порядке расставлены числа 1, 2, 3, ..., 20. Всегда ли можно повернуть один диск относительно другого так, чтобы никакие два одинаковых числа не стояли друг против друга?
Дана последовательность чисел 1, 2, 3, 5, 8, 13, 21, ..., в которой каждое число, начиная с третьего, равно сумме двух предыдущих. В этой последовательности выбрано восемь чисел подряд. Докажите, что их сумма не равна никакому числу рассматриваемой последовательности.
В треугольник вписана окружность, и точки касания её со сторонами треугольника соединены между собой. В полученный таким образом треугольник вписана новая окружность, точки касания которой со сторонами являются вершинами третьего треугольника, имеющего те же углы, что и первоначальный треугольник. Найти эти углы.
В треугольнике известны две стороны<i>a</i>и<i>b</i>. Какой должна быть третья сторона, чтобы наибольший угол треугольника имел наименьшую величину?
Радиолампа имеет семь контактов, расположенных по кругу и включаемых в штепсель, имеющий семь отверстий. Можно ли так занумеровать контакты лампы и отверстия штепселя, чтобы при любом включении лампы хотя бы один контакт попал на свое место (то есть в отверстие с тем же номером)?
Прямые<i>OA</i>и<i>OB</i>перпендикулярны. Найти геометрическое место концов<i>M</i>таких ломаных<i>OM</i>длины 1, которые каждая прямая, параллельная<i>OA</i>или<i>OB</i>, пересекает не более чем в одной точке.
При каких целых <i>n</i> число 20<sup><i>n</i></sup> + 16<sup><i>n</i></sup> – 3<sup><i>n</i></sup> – 1 делится на 323?
Известно, что <i>ax</i><sup>4</sup> + <i>bx</i>³ + <i>cx</i>² + <i>dx + e</i>, где <i>a, b, c, d, e</i> – данные целые числа, при любом целом <i>x</i> делится на 7.
Доказать, что все числа <i>a, b, c, d, e</i> делятся на 7.
От<i>A</i>до<i>B</i> 999 км. Вдоль дороги стоят километровые столбы, на которых написаны расстояния до<i>A</i>и до<i>B</i>: <img width="54" height="36" align="MIDDLE" border="0" src="/storage/problem-media/78097/problem_78097_img_2.gif">,<img width="54" height="36" align="MIDDLE" border="0" src="/storage/problem-media/78097/problem_78097_img_3.gif">, ...,<img width="54" height="36" align="MIDDLE" border="0" src="/storage/problem-media/78097/problem_78097_img_4.gif">. Сколько среди них таких, на которых имеются только две различные цифры?
В прямоугольной таблице, составленной из положительных чисел, произведение суммы чисел любого столбца на сумму чисел любой строки равно числу, стоящему на их пересечении. Доказать, что сумма всех чисел в таблице равна единице.
Известно, что <i>ax</i>³ + <i>bx</i>² + <i>cx + d</i>, где <i>a, b, c, d</i> – данные целые числа, при любом целом <i>x</i> делится на 5. Доказать, что все числа <i>a, b, c, d</i> делятся на 5.
Найти все равнобочные трапеции, которые разбиваются диагональю на два равнобедренных треугольника.
Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.