Олимпиадные задачи из источника «1952 год» для 8 класса
200 учеников выстроены прямоугольником по 10 человек в каждом поперечном ряду и по 20 человек в каждом продольном ряду. В каждом продольном ряду выбран самый высокий ученик, а затем из отобранных 10 человек выбран самый низкий. С другой стороны, в каждом поперечном ряду выбран самый низкий ученик, а затем среди отобранных 20 выбран самый высокий. Кто из двоих окажется выше?
99 прямых разбивают плоскость на<i>n</i>частей. Найдите все возможные значения<i>n</i>, меньшие 199.
Дан отрезок <i>AB</i>. Найдите геометрическое место вершин <i>C</i> остроугольных треугольников <i>ABC</i>.
Докажите, что если квадрат числа начинается с 0,999...9 (100 девяток), то и само число начинается с 0,999...9 (100 девяток).
Для выпуклого четырёхугольника<i>ABCD</i>соблюдено условие:<i>AB</i>+<i>CD</i>=<i>BC</i>+<i>DA</i>. Докажите, что окружность, вписанная в$\Delta$<i>ABC</i>, касается окружности, вписанной в$\Delta$<i>ACD</i>.
Решить систему пятнадцати уравнений с пятнадцатью неизвестными: <i>x</i><sub>1</sub><i>x</i><sub>2</sub> = <i>x</i><sub>2</sub><i>x</i><sub>3</sub> = ... = <i>x</i><sub>14</sub><i>x</i><sub>15</sub> = <i>x</i><sub>15</sub><i>x</i><sub>1</sub> = 1.
Два человека <i>A</i> и <i>B</i> должны попасть из пункта <i>M</i> в пункт <i>N</i>, расположенный в 15 км от <i>M</i>. Пешком они могут передвигаться со скоростью 6 км/ч. Кроме того, в их распоряжении есть велосипед, на котором можно ехать со скоростью 15 км/ч. <i>A</i> отправляется в путь пешком, а <i>B</i> едет на велосипеде до встречи с пешеходом <i>C</i>, идущим из <i>N</i> и <i>M</i>. Дальше <i>B</i> идёт пешком, а <i>C</i> едет на велосипеде до встречи с <i>A</i> и передаёт ему велосипед, на котором тот и приезжает в <i>N</i>. Когда должен выйти из <i>N</i> пешеход <i>C</i>, чтобы <i>A<...
Если все 6 граней параллелепипеда — равные между собой параллелограммы, то они суть ромбы. Докажите.
Докажите тождество (<i>ax + by + cz</i>)² + (<i>bx + cy + az</i>)² + (<i>cx + ay + bz</i>)² = (<i>cx + by + az</i>)² + (<i>bx + ay + cz</i>)² + (<i>ax + cy + bz</i>)².
В$\Delta$<i>ABC</i>вписана окружность, которая касается его сторон в точках<i>L</i>,<i>M</i>и<i>N</i>. Докажите, что$\Delta$<i>LMN</i>всегда остроугольный (независимо от вида$\Delta$<i>ABC</i>).