Олимпиадные задачи из источника «Кружки, факультативы, спецкурсы» для 9 класса - сложность 1 с решениями

а) Аборигены поймали Кука и просят за его выкуп ровно 455 рупий 50 монетами. Смогут ли соратники Кука выкупить его на таких условиях, если в тех краях имеют хождение только монеты в 5, 17 и 31 рупии?

б) А если бы аборигены хотели получить сумму в 910 рупий 50 монетами по 10, 34 и 62 рупии?

Посевной участок под рожь имеет прямоугольную форму. В рамках реструктуризации колхозных земель одну сторону участка увеличили на 20%, а другую уменьшили на 20%. Изменится ли в результате урожай ржи, и если изменится, то на сколько?

Чему равна сумма цифр всех чисел от единицы до миллиарда?

На электронных часах Казанского вокзала высвечиваются часы и минуты (например, 17:36). Сколько времени в течение суток на них а) высвечивается цифра 2; б) высвечиваются цифры 5 и 7 одновременно?

На столе рубашкой вниз лежит игральная карта. Можно ли, перекатывая ее по столу через ребро, добиться того, чтобы она оказалась на прежнем месте, но а) рубашкой вверх; б) рубашкой вниз и вверх ногами?

Раскрасьте рисунок в четыре цвета так, чтобы соседние части были покрашены в разные цвета. б) Можно ли обойтись тремя цветами?<div align="center"><img src="/storage/problem-media/105193/problem_105193_img_2.jpg"></div>

Представьте, что куб стоит на столе на одной своей вершине (так, что верхняя вершина расположена точно над нижней) и освещён прямо сверху. Какая в этом случае получается тень от куба?

В дремучем Муромском лесу растут дубы и осины. Известно, что дубы составляют 99% всех деревьев. Илья Муромец вырубил часть дубов, так что в лесу стало 98% дубов. Какую (в процентах) часть леса вырубил Илья Муромец?

У купца есть два сорта чая: цейлонский по 10 рублей за фунт и индийский по 6 рублей за фунт. Чтобы увеличить прибыль, купец решил смешать два сорта, а продавать смесь по-прежнему по 10 рублей за фунт. В какой пропорции следует ему их смешать, чтобы получать по 3 рубля за фунт сверх положенной прибыли?

Сколькими способами можно разложить девять орехов по трём карманам? (Карманы разные, а орехи одинаковые.)

Назовем натуральное число "изумительным", если оно имеет вид a<sup>b</sup>+ b<sup>a</sup>(где a и b - натуральные числа). Например, число 57 - изумительное, так как 57 = 2<sup>5</sup>+ 5<sup>2</sup>. Является ли изумительным число 2006?

Как расставить числа 5/177, 51/19, 95/9 и знаки арифметических операций "+", "-", "*" и "/" между ними так, чтобы полученное число равнялось 2006?

Сложите шесть спичек так, чтобы они образовали четыре равносторонних треугольника.

а) Из шахматной доски вырезали клетку a1. Можно ли то, что осталось, замостить доминошками 1×2?

б) Тот же вопрос, если вырезали две клетки a1 и h8.

в) Тот же вопрос, если вырезали клетки a1 и h1.

Миша написал на доске в некотором порядке 2004 плюса и 2005 минусов. Время от времени Юра подходит к доске, стирает любые два знака и пишет вместо них один, причём если он стёр одинаковые знаки, то вместо них он пишет плюс, а если разные, то минус. После нескольких таких действий на доске остался только один знак. Какой?

В музее Гугенхайм в Нью-Йорке есть скульптура, имеющая форму куба. Жук, севший на одну из вершин, хочет как можно быстрее осмотреть скульптуру, чтобы перейти к другим экспонатам (для этого достаточно попасть в противоположную вершину куба). Какой путь ему выбрать?

После урока Олег поспорил с Сашей, уверяя, что он знает такое натуральное число <i>m</i>, что число  <sup><i>m</i></sup>/<sub>3</sub> + <sup><i>m</i>²</sup>/<sub>2</sub> + <sup><i>m</i>³</sup>/<sub>6</sub>  нецелое. Прав ли Олег? И если прав, то что это за число?

Олег собрал мешочек монет. Саша пересчитал их, и оказалось, что если разделить все монеты на пять равных кучек, то останется две лишние монеты. А если на четыре равные кучки – останется одна лишняя монета. В то же время монетки можно разделить на три равные кучки. Какое наименьшее число монет могло быть у Олега?

Когда Кай справился с этим заданием, Королева дала ему другую ледяную пластинку (см. рисунок). Как разрезать ее на две равные части? <div align="center"> <img src="/storage/problem-media/104002/problem_104002_img_2.gif"> </div>

Когда Буратино отправился на занятия ВМШ, папа Карло пообещал ему заплатить за первую правильно решенную задачу одну копейку, за вторую - две копейки, за третью - четыре, и т.д. За месяц Буратино получил 655 руб 35 коп. Сколько задач он решил?

Монету в 1 копейку обкатывают вокруг такой же монеты. а) Сколько она сделает полных оборотов вокруг<i>своей</i>оси? б) А если её будут обкатывать вокруг монеты в полдоллара? (Напомним, что диаметр копейки - 15 мм, диаметр монеты в полдоллара - 30 мм.)

Решить уравнение  [<i>x</i>³] + [<i>x</i>²] + [<i>x</i>] = {<i>x</i>} − 1.

<b>Целое число.</b>Доказать, что если<img align="middle" src="/storage/problem-media/102793/problem_102793_img_2.gif">- целое число, то<img align="middle" src="/storage/problem-media/102793/problem_102793_img_3.gif">- тоже целое число.

<b>Найти множество точек.</b>Даны две точки<i>А</i>и<i>В</i>. Найти множество точек, каждая из которых является симметричным образом точки<i>А</i>относительно некоторой прямой, проходящей через точку<i>В</i>.

Каждую грань кубика разбили на четыре равных квадрата и раскрасили эти квадраты в три цвета так, чтобы квадраты, имеющие общую сторону, были покрашены в разные цвета. Докажите, что в каждый цвет покрашено по 8 квадратиков.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка