Олимпиадные задачи из источника «Кировская ЛМШ»
В парламенте некоторой страны две палаты, имеющие равное число депутатов. В голосовании по важному вопросу приняли участие все депутаты, причём воздержавшихся не было. Когда председатель сообщил, что решение принято с преимуществом в 23 голоса, лидер оппозиции заявил, что результаты голосования сфальсифицированы. Как он это понял?
В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба поставлено число, равное произведению чисел в вершинах этой грани.
Может ли сумма получившихся 14 чисел оказаться равной 0?
Отличник Поликарп купил общую тетрадь объёмом 96 листов и пронумеровал все её страницы по порядку числами от 1 до 192. Двоечник Колька вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. В ответе у Кольки получилось 2002. Не ошибся ли он?
В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Могут ли они вращаться?
Пароход шёл от Нижнего Новгорода до Астрахани 5 суток, а обратно – 7 суток. Сколько дней плывут плоты от Нижнего Новгорода до Астрахани?
Турист шел 3,5 часа, причём за каждый промежуток времени в один час он проходил ровно 5 км.
Следует ли из этого, что его средняя скорость равна 5 км/час?
Андрей ведёт машину со скоростью 60 км/ч. Он хочет проезжать каждый километр на 1 минуту быстрее. На сколько ему следует увеличить скорость?
Два охотника отправились одновременно навстречу друг другу из двух деревень, расстояние между которыми 18 км. Первый шёл со скоростью 5 км/ч, а второй – 4 км/ч. Первый охотник взял с собой собаку, которая бежала со скоростью 8 км/ч. Собака сразу же побежала навстречу второму охотнику, встретила его, тявкнула, повернула и с той же скоростью побежала навстречу хозяину, и так далее. Так она бегала до тех пор, пока охотники не встретились. Сколько километров она пробежала?
Пловец плывёт вверх против течения Невы. Возле Дворцового моста он потерял пустую фляжку. Проплыв еще 20 минут против течения, он заметил потерю и вернулся догонять флягу; догнал он её возле моста лейтенанта Шмидта. Какова скорость течения Невы, если расстояние между мостами равно 2 км?
Из пункта <i>A</i> в пункт <i>B</i> выехал велосипедист. Одновременно из пункта <i>B</i> в пункт <i>A</i> навстречу велосипедисту вышел пешеход. После их встречи велосипедист повернул обратно, а пешеход продолжил свой путь. Известно, что велосипедист вернулся в пункт <i>A</i> на 30 минут раньше пешехода, при этом его скорость была в 5 раз больше скорости пешехода. Сколько времени затратил пешеход на путь из <i>A</i> в <i>B</i>?
Группа туристов должна была прибыть на вокзал в 5 часов. К этому времени с турбазы за ними должен был прийти автобус. Однако, прибыв на вокзал в 3:10, туристы пошли пешком на турбазу. Встретив на дороге автобус, они сели в него и прибыли на турбазу на 20 минут раньше предусмотренного времени. С какой скоростью шли туристы до встречи с автобусом, если скорость автобуса 60 км/ч?
Двое одновременно отправились из <i>A</i> в <i>B</i>. Первый поехал на велосипеде, второй – на автомобиле со скоростью, в пять раз большей скорости первого. На полпути с автомобилем произошла авария, и оставшуюся часть пути автомобилист прошел пешком со скоростью, в два раза меньшей скорости велосипедиста. Кто из них раньше прибыл в <i>B</i>?
От потолка комнаты вертикально вниз по стене поползли две мухи. Спустившись до пола, они поползли обратно. Первая муха ползла в оба конца с одной и той же скоростью, а вторая хотя и поднималась вдвое медленнее первой, но зато спускалась вдвое быстрее.
Какая из мух раньше приползет обратно? У какой из мух выше средняя скорость движения?
Найти наибольшее значение, которое может принимать выражение <i>aek – afh + bfg – bdk + cdh – ceg</i>, если каждое из чисел <i>a, b, c, d, e, f, g, h, k</i> равно ±1.
Имеется таблица 1999×2001. Известно, что произведение чисел в каждой строке отрицательно.
Докажите, что найдётся столбец, произведение чисел в котором тоже отрицательно.
а) На столе лежит 21 монета решкой вверх. За одну операцию разрешается перевернуть любые 20 монет. Можно ли за несколько операций добиться, чтобы все монеты легли орлом вверх?
б) Тот же вопрос, если монет 20, а разрешается переворачивать по 19.
98 спичек разложили в 19 коробков и на каждом написали количество спичек в этом коробке. Может ли произведение этих чисел быть нечётным числом?
Разность двух целых чисел умножили на их произведение. Могло ли получиться число 1999?
За круглым столом сидят мальчики и девочки. Докажите, что количество пар соседей разного пола чётно.
В народной дружине 100 человек. Каждый вечер на дежурство выходят трое.
Можно ли организовать дежурство так, чтобы через некоторое время оказалось, что каждый дежурил с каждым ровно один раз?
Можно ли так расставить знаки "+" или "–" между каждыми двумя соседними цифрами числа 123456789, чтобы полученное выражение равнялось нулю?
В вершинах <i>n</i>-угольника стоят числа 1 и –1. На каждой стороне написано произведение чисел на её концах. Оказалось, что сумма чисел на сторонах равна нулю. Доказать, что a) <i>n</i> чётно; б) <i>n</i> делится на 4.
По кругу расставлены нули и единицы (и те и другие присутствуют). Каждое число, у которого два соседа одинаковы, заменяют на ноль, а остальные числа – на единицы, и такую операцию проделывают несколько раз.
a) Могут ли все числа стать нулями, если их 13 штук? б) Могут ли все числа стать единицами, если их 14 штук?
В квадрате 25×25 стоят числа 1 и –1. Вычислили все произведения этих чисел по строкам и по столбцам.
Доказать, что сумма этих произведений не равна нулю.
На клетчатой бумаге нарисован замкнутый путь (по линиям сетки). Доказать, что он имеет чётную длину (сторона клетки имеет длину 1).