Олимпиадные задачи из источника «Кружки МЦНМО» для 8 класса - сложность 1 с решениями
а) Аборигены поймали Кука и просят за его выкуп ровно 455 рупий 50 монетами. Смогут ли соратники Кука выкупить его на таких условиях, если в тех краях имеют хождение только монеты в 5, 17 и 31 рупии?
б) А если бы аборигены хотели получить сумму в 910 рупий 50 монетами по 10, 34 и 62 рупии?
Петя сложил несколько чисел, среди которых было <i>N</i> чётных и <i>M</i> нечётных. Вы можете спросить у Пети про одно из чисел <i>N</i> или <i>M</i>, на ваш выбор, чётное ли оно. Достаточно ли этого, чтобы узнать, чётной или нечётной будет полученная Петей сумма?
Сможете ли вы найти шесть целых чисел, сумма и произведение которых являются нечётными числами? А двести?
В классе все увлекаются математикой или биологией. Сколько человек в классе, если математикой занимаются 15 человек, биологией – 20, а математикой и биологией – 10?
Доказать, что среди любых одиннадцати целых чисел найдутся два, разность между которыми делится на 10.
10 школьников на олимпиаде решили 35 задач, причем известно, что среди них есть школьники, решившие ровно одну задачу, школьники, решившие ровно две задачи и школьники, решившие ровно три задачи. Докажите, что есть школьник, решивший не менее пяти задач.
Можно ли в таблице 6×6 расставить числа 0, 1 и -1 так, чтобы все суммы по вертикалям, горизонталям и двум диагоналям были различны?
Доказать, что если 21 человек собрали 200 орехов, то есть два человека, собравшие поровну орехов.
Игорь закрасил в квадрате 6×6 несколько клеток. После этого оказалось, что во всех квадратиках 2×2 одинаковое число закрашенных клеток и во всех полосках 1×3 одинаковое число закрашенных клеток. Докажите, что старательный Игорь закрасил все клетки.
Сколько квадратов со сторонами по линиям сетки можно нарисовать на доске 8×8?
Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?
Можно ли в прямоугольник 5×6 поместить прямоугольник 3×8?
Может ли быть верным равенство К×О×Т = У×Ч×Е×Н×Ы×Й, если вместо букв в него подставить цифры от 1 до 9 (разным буквам соответствуют разные цифры)?
<b>Из треугольника прямоугольник.</b>Разрежьте произвольный треугольник на три части, из которых можно сложить прямоугольник.
<b>Режем буквой Т.</b>Разрежьте фигуру на буквы Т (фигура и буква Т изображены на рисунке). <div align="center"><img src="/storage/problem-media/102848/problem_102848_img_2.gif" border="1"></div>
<b>Вырезаем из прямоугольника.</b>Из прямоугольника 13 × 7 вырежьте 15 прямоугольников 2 × 3.
Сумма пяти чисел равна 200. Докажите, что их произведение не может оканчиваться на 1999.
В США дату принято записывать так: номер месяца, потом номер дня и год. В Европе же сначала идёт число, потом месяц и год. Сколько в году дней, дату которых нельзя прочитать однозначно, не зная, каким способом она написана?
Что больше 2<sup>700</sup> или 5<sup>300</sup>?
<b>Точные квадраты.</b>Доказать, что являются точными квадратами все числа вида 16; 1156; 111556 и т.д. (в середину предыдущего числа вставляется число 15).
<b>Постройте график.</b>Постройте график функции<var>y</var>= 3<var>x</var>+ |5<var>x</var>− 10|.
<b>Из двух квадратов один.</b>Имеются два квадрата 3×3 и 1×1. Разрезать эти квадраты прямыми на части (не более трех), из которых можно было бы сложить один квадрат.
Опустить из данной точки <i>A</i> вне прямой <i>l</i> перпендикуляр на эту прямую, проведя не более трёх линий? (Третьей линией должен быть перпендикуляр.)
Предложите способ измерения диагонали обычного кирпича, который легко реализуется на практике (без теоремы Пифагора).
Решить уравнение [<i>x</i>³] + [<i>x</i>²] + [<i>x</i>] = {<i>x</i>} − 1.