Олимпиадные задачи из источника «Книги, журналы» для 5-9 класса - сложность 2 с решениями
Книги, журналы
Все источникиВ шахматном турнире участвовало 8 человек, и в итоге они набрали разное количество очков (каждый играл с каждым один раз, победа – 1 очко, ничья – 0,5 очка, поражение – 0). Шахматист, занявший второе место, набрал столько же очков, сколько четверо последних набрали вместе.
Как сыграли между собой шахматисты, занявшие третье и седьмое места?
Известно, что квадратные уравнения <i>ax</i>² + <i>bx + c</i> = 0 и <i>bx</i>² + <i>cx + a</i> = 0 (<i>a, b</i> и <i>c</i> – отличные от нуля числа) имеют общий корень.
Найдите его.
Точка <i>O</i>, лежащая внутри правильного шестиугольника, соединена с вершинами. Возникшие при этом шесть треугольников раскрашены попеременно в красный и синий цвет. Докажите, что сумма площадей красных треугольников равна сумме площадей синих.
Пусть <i>K, L, M, N</i> – середины сторон <i>AB, BC, CD, AD</i> выпуклого четырёхугольника <i>ABCD</i>; отрезки <i>KM</i> и <i>LN</i> пересекаются в точке <i>O</i>.
Докажите, что <i>S<sub>AKON</sub> + S<sub>CLOM</sub> = S<sub>BKOL</sub> + S<sub>DNOM</sub></i>.
Можно ли так расставить фишки в клетках доски 8×8, чтобы в каждых двух столбцах количество фишек было одинаковым, а в каждых двух строках – различным?
<center><i> <img src="/storage/problem-media/109632/problem_109632_img_2.gif"> </i></center> Центры<i> O<sub>1</sub> </i>,<i> O<sub>2</sub> </i>и<i> O<sub>3</sub> </i>трех непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек<i> O<sub>1</sub> </i>,<i> O<sub>2</sub> </i>и<i> O<sub>3</sub> </i>проведены касательные к данным окружностям так, как показано на рисунке. Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих о...
Доказать, что остаток от деления простого числа на 30 – простое число или единица.
Внутри параллелограмма <i>ABCD</i> выбрана точка <i>O</i>, причём ∠<i>OAD</i> = ∠<i>OCD</i>. Докажите, что ∠<i>OBC</i> = ∠<i>ODC</i>.
Дан невыпуклый несамопересекающийся четырёхугольник, который имеет три внутренних угла по 45°.
Докажите, что середины его сторон лежат в вершинах квадрата.
В выпуклый четырёхугольник <i>ABCD</i>, у которого углы при вершинах <i>B</i> и <i>D</i> – прямые, вписан четырёхугольник с периметром <i>P</i> (его вершины лежат по одной на сторонах четырёхугольника <i>ABCD</i>).
а) Докажите неравенство <i>P</i> ≥ 2<i>BD</i>.
б) В каких случаях это неравенство превращается в равенство?
Диагонали параллелограмма <i>ABCD</i> пересекаются в точке <i>O</i>. Описанная окружность треугольника <i>AOB</i> касается прямой <i>BC</i>.
Докажите, что описанная окружность треугольника <i>BOC</i> касается прямой <i>CD</i>.
В треугольнике <i>ABC</i> проведены биссектрисы <i>AD</i> и <i>BE</i>. Известно, что <i>DE</i> – биссектриса угла <i>ADC</i>. Найдите величину угла <i>A</i>.
Докажите, что отрезки, соединяющие вершины треугольника с точками касания противоположных сторон с соответствующими вневписанными окружностями, пересекаются в одной точке {(точка Нагеля))
Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.
Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.
Путешественник посетил деревню, в котором каждый человек либо всегда говорит правду, либо всегда лжёт. Жители деревни стали в круг, и каждый сказал путешественнику про соседа справа, правдив ли он. На основании этих сообщений путешественник смог однозначно определить, какую долю от всех жителей деревни составляют лжецы. Определите и вы, чему она равна.
Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например, <sup>49</sup>/<sub>98</sub> = <sup>4</sup>/<sub>8</sub>. Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить".
Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.
Винни-Пух решил позавтракать. Он налил себе стакан чая и добавил сливок из большого кувшина. Но как только он перемешал сливки и чай, то понял, что хочет пить чай без сливок. Недолго думая, он вылил из стакана в кувшин столько же чая со сливками, сколько сначала взял оттуда сливок. Конечно же, при переливании чай от сливок не отделился, и у Винни-Пуха образовались две смеси чая и сливок – в стакане и в кувшине. Тогда Винни-Пух задумался: чего же получилось больше – чая в кувшине со сливками или сливок в стакане чая? А как думаете вы?
Найдите сумму 1·1! + 2·2! + 3·3! + … + <i>n</i>·<i>n</i>!.
В Волшебной Стране свои волшебные законы природы, один из которых гласит: "Ковёр-самолет будет летать только тогда, когда он имеет прямоугольную форму". У Ивана-царевича был ковёр-самолет размером 9×12. Как-то раз Змей Горыныч подкрался и отрезал от этого ковра маленький коврик размером 1×8. Иван-царевич очень расстроился и хотел было отрезать еще кусочек 1×4, чтобы получился прямоугольник 8×12, но Василиса Премудрая предложила поступить по-другому. Она разрезала ковёр на три части, из которых волшебными нитками сшила квадратный ковёр-самолет размером 10×10. Как Василиса Премудрая переделала испорченный ковер?
В семье шестеро детей. Пятеро из них соответственно на 2, 6, 8, 12 и 14 лет старше младшего, причём возраст каждого ребенка – простое число.
Сколько лет младшему?
Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?
В каждой комнате особняка стояли букеты цветов. Всего было 30 букетов роз, 20 – гвоздик и 10 – хризантем, причём, в каждой комнате стоял хотя бы один букет. При этом ровно в двух комнатах стояли одновременно и хризантемы, и гвоздики, ровно в трёх комнатах – и хризантемы, и розы, ровно в четырёх комнатах – и гвоздики, и розы. Могло ли в особняке быть 55 комнат?
На плоскости проведено <i>n</i> прямых. Каждая пересекается ровно с 1999 другими. Найдите все <i>n</i>, при которых это возможно.
Можно ли бумажный круг с помощью ножниц перекроить в квадрат той же площади? (Разрешается сделать конечное число разрезов по прямым линиям и дугам окружностей.)