Олимпиадные задачи из источника «1996 год» - сложность 3 с решениями
В плоскости выпуклого четырёхугольника <i>ABCD</i> расположена точка <i>P</i>. Проведены биссектрисы <i>PK,PL, PM</i> и <i>PN</i> треугольников <i>APB, BPC, CPD</i> и <i>DPA</i> соответственно.
а) Найдите хотя бы одну такую точку <i>P</i>, для которой четырёхугольник <i>KLMN</i> – параллелограмм.
б) Найдите все такие точки.
В углу шахматной доски размером <i>m×n</i> полей стоит ладья. Двое по очереди передвигают её по вертикали или по горизонтали на любое число полей; при этом не разрешается, чтобы ладья стала на поле или прошла через поле, на котором она уже побывала (или через которое уже проходила). Проигрывает тот, кому некуда ходить. Кто из играющих может обеспечить себе победу: начинающий или его партнер, и как ему следует играть?
a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них.
б) Если каждую задачу решили четыре ученика, то может оказаться, что таких двоих не найдётся.
Докажите, что существует бесконечно много таких троек чисел <i>n</i> – 1, <i>n</i>, <i>n</i> + 1, что:
a) <i>n</i> представимо в виде суммы двух квадратов натуральных (целых положительных) чисел, а <i>n</i> – 1 и <i>n</i> + 1 – нет;
б) каждое из трёх чисел представимо в виде суммы двух квадратов натуральных чисел.
В равнобедренном треугольнике <i>ABC</i> (<i>AB = AC</i>) угол <i>A</i> равен α. На стороне <i>AB</i> взята точка <i>D</i> так, что <i>AD = <sup>AB</sup></i>/<sub><i>n</i></sub>. Найдите сумму <i>n</i> – 1 углов, под которыми виден отрезок <i>AD</i> из точек, делящих сторону <i>BC</i> на <i>n</i> равных частей:
а) при <i>n</i> = 3;
б) при произвольном <i>n</i>.
Вдоль лыжной трассы расставлено в ряд бесконечное число кресел, занумерованных по порядку: 1, 2, 3, ... Кассирша продала билеты на первые <i>m</i> мест, но на некоторые места она продала не один билет, и общее число проданных билетов <i>n > m</i>. Зрители входят на трассу по одному. Каждый, подходя к месту, указанному на его билете, занимает его, если оно свободно, а если оно занято, говорит "Ох!" и идёт к следующему по номеру месту. Если оно свободно, то занимает его, если же занято, снова говорит "Ох!" и двигается дальше – до первого свободного места. Докажите, что общее количество "охов" не зависит от того, в каком порядке зрители выходят на трассу.
Существует ли возрастающая арифметическая прогрессия
а) из 11,
б) из 10000,
в) из бесконечного числа натуральных чисел,
такая что последовательность сумм цифр её членов – также возрастающая арифметическая прогрессия?
Прямоугольник разбит на прямоугольные треугольники, граничащие друг с другом только по целым сторонам, так, что общая сторона двух треугольников всегда служит катетом одного и гипотенузой другого. Докажите, что отношение большей стороны прямоугольника к меньшей не менее 2.
Дано <i>n</i> чисел, <i>p</i> – их произведение. Разность между <i>p</i> и каждым из этих чисел – нечётное число. Докажите, что все данные <i>n</i> чисел иррациональны.
Существуют ли такие
а) 4 различных натуральных числа;
б) 5 различных натуральных чисел;
в) 5 различных целых чисел;
г) 6 различных целых чисел,
что сумма каждых трёх из них – простое число?
Есть доска 1×1000, вначале пустая, и куча из <i>n</i> фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую <i>серию</i> фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов.
а) Докажите, что при <i>n</i> = 98 первый всегда может выиграть.
б) При каком наибольшем <i>n</i> первый всегда может выиграть?
а) Существуют ли два равных семиугольника, все вершины которых совпадают, но никакие стороны не совпадают?
б) А три таких семиугольника?
В компанию из <i>n</i> человек пришёл журналист. Ему известно, что в этой компании есть человек <i>Z</i>, который знает всех остальных членов компании, но его не знает никто. Журналист может к каждому члену компании обратиться с вопросом: "Знаете ли вы такого-то?"
а) Может ли журналист установить, кто из компании есть <i>Z</i>, задав менее <i>n</i> вопросов?
б) Найдите наименьшее количество вопросов, достаточное для того, чтобы наверняка найти <i>Z</i>, и докажите, что меньшим числом вопросов обойтись нельзя.
(Все отвечают на вопросы правдиво. Одному человеку можно задавать несколько вопросов.)
Капитан нашёл Остров Сокровищ, имеющий форму круга. На его берегу растут шесть пальм. Капитан знает, что клад закопан в середине отрезка, соединяющего ортоцентры треугольников <i>ABC</i> и <i>DEF</i>, где <i>A, B, C, D, E, F</i> – эти шесть пальм, но он не знает, какой буквой обозначена каждая пальма. Докажите, что тем не менее он может найти клад с первой же попытки.