Олимпиадные задачи из источника «выпуск 5»
выпуск 5
НазадВ Думе 1600 депутатов, которые образовали 16000 комитетов по 80 человек в каждом.
Докажите, что найдутся два комитета, имеющие не менее четырёх общих членов.
<center><i> <img src="/storage/problem-media/109632/problem_109632_img_2.gif"> </i></center> Центры<i> O<sub>1</sub> </i>,<i> O<sub>2</sub> </i>и<i> O<sub>3</sub> </i>трех непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек<i> O<sub>1</sub> </i>,<i> O<sub>2</sub> </i>и<i> O<sub>3</sub> </i>проведены касательные к данным окружностям так, как показано на рисунке. Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих о...
Дан выпуклый многоугольник, никакие две стороны которого не параллельны. Для каждой из его сторон рассмотрим угол, под которым она видна из вершины, наиболее удалённой от прямой, содержащей эту сторону. Докажите, что сумма всех таких углов равна 180°.
Докажите, что если числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i> отличны от нуля и для любого целого <i>k</i> = 0, 1, ..., <i>n</i> (<i>n < m</i> – 1) выполняется равенство:
<i>a</i><sub>1</sub> + <i>a</i><sub>2</sub>·2<sup><i>k</i></sup> + <i>a</i><sub>3</sub>·3<sup><i>k</i></sup> + ... + <i>a<sub>m</sub>m<sup>k</sup></i> = 0, то в последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i> ...
Существует ли такое конечное множество <i>M</i> ненулевых действительных чисел, что для любого натурального <i>n</i> найдется многочлен степени не меньше <i>n</i> с коэффициентами из множества <i>M</i>, все корни которого действительны и также принадлежат <i>M</i>?