Олимпиадные задачи из источника «выпуск 1»
выпуск 1
НазадНа плоскости даны три точки <i>A, B, C</i>. Через точку <i>C</i> проведите прямую так, чтобы произведение расстояний от этой прямой до <i>A</i> и <i>B</i> было максимальным. Всегда ли такая прямая единственна?
Существуют ли такие
а) 4 различных натуральных числа;
б) 5 различных натуральных чисел;
в) 5 различных целых чисел;
г) 6 различных целых чисел,
что сумма каждых трёх из них – простое число?
На плоскости расположен квадрат и невидимыми чернилами нанесена точка <i>P</i>. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит <i>P</i> (если <i>P</i> лежит на прямой, то он говорит, что <i>P</i> лежит на прямой).
Какое наименьшее число таких вопросов необходимо задать, чтобы узнать, лежит ли точка <i>P</i> внутри квадрата?