Олимпиадные задачи из источника «параграф 3. Инварианты» для 9 класса
параграф 3. Инварианты
НазадКвадратное поле разбито на 100 одинаковых участков, 9 из которых поросли бурьяном. Известно, что бурьян за год распространяется на те и только те участки, у каждого из которых не менее двух соседних участков уже поражены бурьяном (участки соседние, если они имеют общую сторону). Докажите, что полностью все поле бурьяном не зарастёт.
Даны точки<i>A</i><sub>1</sub>,...,<i>A</i><sub>n</sub>. Рассмотрим окружность радиуса <i>R</i>, содержащую некоторые из них. Построим затем окружность радиуса <i>R</i>с центром в центре масс точек, лежащих внутри первой окружности, и т. д. Докажите, что этот процесс остановится, т. е. окружности начнут совпадать.
Докажите, что выпуклый многоугольник нельзя разрезать на конечное число невыпуклых четырехугольников.
Докажите, что существуют равновеликие многоугольники, которые нельзя разбить на многоугольники (возможно, невыпуклые), переводящиеся друг в друга параллельным переносом.
Выпуклый многоугольник разрезан на<i>p</i>треугольников так, что на их сторонах нет вершин других треугольников. Пусть<i>n</i>и<i>m</i>— количества вершин этих треугольников, лежащих на границе исходного многоугольника и внутри его. а) Докажите, что<i>p</i>=<i>n</i>+ 2<i>m</i>- 2. б) Докажите, что количество отрезков, являющихся сторонами полученных треугольников, равно 2<i>n</i>+ 3<i>m</i>- 3.
Многоугольник разрезан на несколько многоугольников. Пусть <i>p</i> — количество полученных многоугольников,<i>q</i> — количество отрезков, являющихся их сторонами,<i>r</i> — количество точек, являющихся их вершинами. Докажите, что<i>p</i>-<i>q</i>+<i>r</i>= 1.
В центре каждой клетки шахматной доски стоит по фишке. Фишки переставили так, что попарные расстояния между ними не уменьшились. Докажите, что в действительности попарные расстояния не изменились.
Дан выпуклый 2<i>n</i>-угольник <i>A</i><sub>1</sub>...<i>A</i><sub>2<i>n</i></sub>. Внутри него взята точка <i>P</i>, не лежащая ни на одной из диагоналей.
Докажите, что точка <i>P</i> принадлежит чётному числу треугольников с вершинами в точках <i>A</i><sub>1</sub>,..., <i>A</i><sub>2<i>n</i></sub>.
Дана шахматная доска. Разрешается перекрашивать другой цвет сразу все клетки, расположенные внутри любого квадрата 2×2.
Может ли при этом на доске остаться ровно одна чёрная клетка?
Дана шахматная доска. Разрешается перекрашивать в другой цвет сразу все клетки какой-либо горизонтали или вертикали.
Может ли при этом получиться доска, у которой ровно одна чёрная клетка?