Задача
В центре каждой клетки шахматной доски стоит по фишке. Фишки переставили так, что попарные расстояния между ними не уменьшились. Докажите, что в действительности попарные расстояния не изменились.
Решение
Если хотя бы одно из расстояний между фишками увеличилось бы, то увеличилась бы и сумма всех попарных расстояний между фишками, но сумма всех попарных расстояний между фишками не изменяется при любой перестановке.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет