Олимпиадные задачи из источника «параграф 2. Экстремальные точки треугольника» для 10 класса
параграф 2. Экстремальные точки треугольника
НазадНайдите внутри треугольника<i>ABC</i>точку <i>O</i>, для которой сумма квадратов расстояний от нее до сторон треугольника минимальна.
Дан треугольник<i>ABC</i>. Найдите внутри его точку <i>O</i>, для которой сумма длин отрезков<i>OA</i>,<i>OB</i>,<i>OC</i>минимальна. (Обратите внимание на тот случай, когда один из углов треугольника больше120<sup><tt>o</tt></sup>.)
Из точки <i>M</i>, лежащей внутри данного треугольника <i>ABC</i>, опущены перпендикуляры <i>MA</i><sub>1</sub>, <i>MB</i><sub>1</sub>, <i>MC</i><sub>1</sub> на прямые <i>BC, CA, AB</i>. Для каких точек <i>M</i> внутри данного треугольника <i>ABC</i> величина <img align="absmiddle" src="/storage/problem-media/57540/problem_57540_img_2.gif"> принимает наименьшее значение?
Внутри треугольника <i>ABC</i> взята точка <i>O</i>. Пусть <i>d<sub>a</sub>, d<sub>b</sub>, d<sub>c</sub></i> – расстояния от нее до прямых <i>BC, CA, AB</i>.
При каком положении точки <i>O</i> произведение <i>d<sub>a</sub>d<sub>b</sub>d<sub>c</sub></i> будет наибольшим?
Из точки <i>M</i>описанной окружности треугольника<i>ABC</i>опущены перпендикуляры<i>MP</i>и<i>MQ</i>на прямые<i>AB</i>и<i>AC</i>. При каком положении точки <i>M</i>длина отрезка<i>PQ</i>максимальна?
Дан треугольник<i>ABC</i>. Найдите на прямой<i>AB</i>точку <i>M</i>, для которой сумма радиусов описанных окружностей треугольников<i>ACM</i>и<i>BCM</i>была бы наименьшей.