Олимпиадные задачи из источника «Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки» для 9 класса - сложность 3-4 с решениями
Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки
НазадНа острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?
Найти все пары целых чисел (<i>x, y</i>), удовлетворяющие уравнению 3·2<sup><i>x</i></sup> + 1 = <i>y</i>².
Прямоугольная шоколадка размером 5×10 разбита продольными и поперечными углублениями на 50 квадратных долек. Двое играют в такую игру. Начинающий разламывает шоколадку по некоторому углублению на две прямоугольные части и кладёт на стол полученные части. Затем игроки по очереди делают аналогичные операции: каждый раз очередной игрок разламывает одну из частей на две части. Тот, кто первый отломит квадратную дольку (без углублений),<nobr>а) проигрывает;</nobr><nobr>б) выигрывает.</nobr>Кто из играющих может обеспечить себе выигрыш: начинающий или его партнёр?
Докажите, что при любом простом <i>p</i> <img align="middle" src="/storage/problem-media/60750/problem_60750_img_2.gif"> делится на <i>p</i>.
<i>n</i> – натуральное число. Докажите, что <i>n<sup>n</sup></i> > (<i>n</i> + 1)<sup><i>n</i>–1</sup>.
Решите уравнение <i>a</i>² + <i>b</i>² + <i>c</i>² + <i>d</i>² – <i>ab – bc – cd – d</i> + <sup>2</sup>/<sub>5</sub> = 0.
Докажите неравенство Коши для пяти чисел, то есть докажите, что при <i>a, b, c , d e</i> ≥ 0 имеет место неравенство <div align="CENTER" class="mathdisplay"><img width="206" height="53" align="MIDDLE" border="0" src="/storage/problem-media/30881/problem_30881_img_2.gif"> </div>
Докажите, что 4<sup>79</sup> < 2<sup>100</sup> + 3<sup>100</sup> < 4<sup>80</sup>.
Докажите, что из набора 0, 1, 2, ..., ½ (3<sup><i>k</i></sup> – 1) можно выбрать 2<sup><i>k</i></sup> чисел так, чтобы никакое из них не являлось средним арифметическим двух других выбранных чисел.
Докажите, что из набора 0, 1, 2, ..., 3<sup><i>k</i></sup> – 1 можно выбрать 2<sup><i>k</i></sup> чисел так, чтобы никакое из них не являлось средним арифметическим двух других выбранных чисел.
Какое наименьшее число гирь необходимо для того, чтобы иметь возможность взвесить любое число граммов от 1 до 100 на чашечных весах, если гири можно класть на обе чашки весов?
Какое наименьшее число гирь необходимо для того, чтобы иметь возможность взвесить любое число граммов от 1 до 100 на чашечных весах, если гири можно класть только на одну чашку весов?
Сформулируйте (и докажите) условие, позволяющее определить четность числа по его записиа) в троичной системе счисления;б) в системе счисления с основанием <i>n</i>.
В некотором государстве 101 город. а) Каждый город соединен с каждым из остальных дорогой с односторонним движением, причём в каждый город входит 50 дорог и из каждого города выходит 50 дорог. Докажите, что из каждого города можно доехать в любой другой, проехав не более чем по двум дорогам. б) Некоторые города соединены дорогами с односторонним движением, причём в каждый город входит 40 дорог и из каждого города выходит 40 дорог. Докажите, что из каждого города можно добраться до любого другого, проехав не более чем по трём дорогам.
В одном государстве 100 городов и каждый соединён с каждым дорогой с односторонним движением. Докажите, что можно поменять направление движения не более чем на одной дороге так, чтобы от каждого города можно было доехать до любого другого.
В некоторой стране каждый город соединён с каждым дорогой с односторонним движением.
Докажите, что найдётся город, из которого можно добраться в любой другой.
На ребрах связного графа расставлены стрелки так, что для каждой вершины числа входящих и выходящих рёбер равны.
Докажите, что двигаясь по стрелкам, можно добраться от каждой вершины до любой другой.
В связном графе степени всех вершин чётны. Докажите, что на рёбрах этого графа можно расставить стрелки так, чтобы выполнялись следующие условия:
а) двигаясь по стрелкам, можно добраться от каждой вершины до любой другой;
б) для каждой вершины числа входящих и выходящих рёбер равны.
Каждое из рёбер полного графа с 18 вершинами покрашено в один из двух цветов.
Докажите, что есть четыре вершины, все рёбра между которыми – одного цвета.
В некоторой стране каждые два города соединены либо авиалинией, либо железной дорогой. Докажите, что
а) можно выбрать вид транспорта так, чтобы от каждого города можно было добраться до любого другого, пользуясь только этим видом транспорта;
б) из некоторого города, выбрав один из видов транспорта, можно добраться до любого другого города не более чем с одной пересадкой (пользоваться можно только выбранным видом транспорта);
в) каждый город обладает свойством из пункта б);
г) можно выбрать вид транспорта так, чтобы пользуясь только им, можно было добраться из каждого города до любого другого не более чем с двумя пересадками.
Каждый из 102 учеников одной школы знаком не менее чем с 68 другими.
Докажите, что среди них найдутся четверо, имеющие одинаковое число знакомых.
Можно ли составить решётку, изображённую на рисунке
а) из пяти ломаных длины 8?
б) из восьми ломаных длины 5?
(Длина стороны клетки равна 1.) <div align="center"><img width="113" height="113" align="BOTTOM" border="0" src="/storage/problem-media/30807/problem_30807_img_2.gif"> </div>
Докажите, что связный граф, имеющий не более двух нечётных вершин, можно нарисовать, не отрывая карандаша от бумаги и проводя каждое ребро ровно один раз.
Семиугольник разбит на выпуклые пяти- и шестиугольники, причём так, что каждая его вершина является вершиной по крайней мере двух многоугольников разбиения. Докажите, что число пятиугольников разбиения не меньше 13.
Каждое ребро полного графа с 11 вершинами покрашено в один из двух цветов: красный или синий.
Докажите, что либо "красный", либо "синий" граф не является плоским.