Олимпиадные задачи по теме «Методы» для 8 класса - сложность 1 с решениями
Методы
Все категорииДима увидел в музее странные часы (см. рисунок). Они отличаются от обычных часов тем, что на их циферблате нет цифр и вообще непонятно, где у часов верх; да ещё секундная, минутная и часовая стрелки имеют одинаковую длину. Какое время показывали часы?
(Стрелки А и Б на рисунке смотрят ровно на часовые отметки, а стрелка В чуть-чуть не дошла до часовой отметки.) <div align="center"><img src="/storage/problem-media/116964/problem_116964_img_2.gif"></div>
На некоторые клетки квадратной доски 4×4 выкладывают стопкой золотые монеты, а на остальные клетки – серебряные. Можно ли положить монеты так, чтобы в каждом квадрате 3×3 серебряных монет было больше, чем золотых, а на всей доске золотых было больше, чем серебряных?
Верно ли, что если <i>b > a + c</i> > 0, то квадратное уравнение <i>ax</i>² + <i>bx + c</i> = 0 имеет два корня?
В 10 одинаковых кувшинов было разлито молоко – не обязательно поровну, но каждый оказался заполнен не более чем на 10%. За одну операцию можно выбрать кувшин и отлить из него любую часть поровну в остальные кувшины. Докажите, что не более чем за 10 таких операций можно добиться, чтобы во всех кувшинах молока стало поровну.
Можно ли квадрат разрезать на 9 квадратов и раскрасить их так, чтобы получились 1 белый, 3 серых и 5 чёрных квадратов, причём одноцветные квадраты были бы равны, а разноцветные квадраты – не равны?
В шестиугольнике пять углов по 90°, а один угол — 270° (см. рисунок). C помощью линейки без делений разделите его на два равновеликих многоугольника.<div align="center"><img src="/storage/problem-media/116184/problem_116184_img_2.gif"></div>
Дана прямоугольная полоска размером 12×1. Oклейте этой полоской в два слоя куб с ребром 1 (полоску можно сгибать, но нельзя надрезать).
Можно ли в клетки квадрата 10×10 поставить некоторое количество звёздочек так, чтобы в каждом квадрате 2×2 было ровно две звёздочки, а в каждом прямоугольнике 3×1 – ровно одна звёздочка? (В каждой клетке может стоять не более одной звёздочки.)
На рисунке изображен параллелограмм и отмечена точка <i>P</i> пересечения его диагоналей. Проведите через <i>P</i> прямую так, чтобы она разбила параллелограмм на две части, из которых можно сложить ромб.<div align="center"><img src="/storage/problem-media/116078/problem_116078_img_2.png"></div>
Существует ли натуральное число, которое при делении на сумму своих цифр как в частном, так и в остатке дает число 2011?
На доске записаны числа 1, 2<sup>1</sup>, 2², 2³, 2<sup>4</sup>, 2<sup>5</sup>. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Может ли на доске в результате нескольких таких операций остаться только число 15?
В некоторых клетках таблицы 10x10 расставлены несколько крести- ков и несколько ноликов. Известно, что нет линии (строки или столб- ца), полностью заполненной одинаковыми значками (крестиками или ноликами). Однако, если в любую пустую клетку поставить любой значок, то это условие нарушится. Какое минимальное число значков может стоять в таблице?
Какое наибольшее значение может принимать выражение <img align="absmiddle" src="/storage/problem-media/115510/problem_115510_img_2.gif"> где <i>a, b, c</i> – попарно различные ненулевые цифры?
КУБ является кубом. Докажите, что ШАР кубом не является. (КУБ и ШАР — трёхзначные числа, разные буквы обозначают различные цифры.)
В классе25учеников. Известно, что у любых двух девочек класса количество друзей-мальчиков из этого класса не совпадает. Какое наибольшее количество девочек может быть в этом классе?
У 2009 года есть такое свойство: меняя местами цифры числа 2009, нельзя получить меньшее четырехзначное число (с нуля числа не начинаются). В каком году это свойство впервые повторится снова?
Число умножили на сумму его цифр и получили 2008. Найдите это число.
В таблицу 4×4 записали натуральные числа. Могло ли оказаться так, что сумма чисел в каждой следующей строке на 2 больше, чем в предыдущей, а сумма чисел в каждом следующем столбце на 3 больше, чем в предыдущем?
Про числа<i> a </i>и<i> b </i>известно, что<i> a=b+</i>1. Может ли оказаться так, что<i> a<sup>4</sup>=b<sup>4</sup> </i>?
Назовем число зеркальным, если справа налево оно читается так же, как слева направо. Например, число78887– зеркальное. Найдите все зеркальные пятизначные числа, в записи которых используются только цифры1и0.
У Пети в кармане несколько монет. Если Петя наугад вытащит из кармана 3 монеты, среди них обязательно найдётся монета "1 рубль". Если Петя наугад вытащит 4 монеты из кармана, среди них обязательно найдётся монета "2 рубля". Петя вытащил из кармана 5 монет. Назовите эти монеты.
Четырехзначное число начинается с цифры 6. Эту цифру переставили в конец числа. Полученное число оказалось на 1152 меньше исходного. Найдите исходное число.
На столе лежат в ряд пять монет: средняя – орлом вверх, а остальные – решкой вверх. За одну операцию разрешается одновременно перевернуть ровно три монеты, лежащие рядом. Можно ли, выполнив такую операцию несколько раз, добиться того, чтобы все пять монет лежали орлом вверх?
Даны точки <i>A</i>(0;0), <i>B</i>(- 2;1), <i>C</i>(3;3), <i>D</i>(2; - 1) и окружность <!-- MATH $(x - 1)^{2} + (y + 3)^{2} = 25$ --> (<i>x</i> - 1)<sup>2</sup> + (<i>y</i> + 3)<sup>2</sup> = 25. Выясните, где расположены эти точки: на окружности, внутри или вне окружности.
На столе рубашкой вниз лежит игральная карта. Можно ли, перекатывая ее по столу через ребро, добиться того, чтобы она оказалась на прежнем месте, но а) рубашкой вверх; б) рубашкой вниз и вверх ногами?