Олимпиадные задачи по теме «Принцип крайнего» для 1-8 класса - сложность 5 с решениями
Принцип крайнего
НазадНа плоскости нарисовано несколько прямоугольников со сторонами, параллельными осям координат. Известно, что каждые два прямоугольника можно пересечь вертикальной или горизонтальной прямой. Докажите, что можно провести одну горизонтальную и одну вертикальную прямую так, чтобы любой прямоугольник пересекался хотя бы с одной из этих двух прямых.
Докажите, что выпуклый многоугольник может быть разрезан непересекающимися диагоналями на остроугольные треугольники не более, чем одним способом.
На плоскости дано<i> k </i>точек, расположенных так, что на каждой прямой, соединяющей две из этих точек, лежит по крайней мере ещё одна из них. Доказать, что все<i> k </i>точек лежат на одной прямой.
Окружность разбита точками<i>A</i><sub>1</sub>,<i>A</i><sub>2</sub>,...,<i>A</i><sub><i>n</i></sub>на<nobr><i>n</i> равных</nobr>дуг, каждая из которых окрашена в какой-то цвет. Две дуги окружности (с концами в точках разбиения) называем одинаково окрашенными, если при некотором повороте окружности одна из них полностью, включая цвета всех дуг, совпадает с другой. (Например, на рисунке дуги<i>A</i><sub>2</sub><i>A</i><sub>6</sub>и<i>A</i><sub>6</sub><i>A</i><sub>10</sub>одинаково окрашены.)Докажите, что если для каждой точки разбиения <i>A</i><sub><i>k</i><...
На прямой дано 50 отрезков. Докажите, что верно хотя бы одно из следующих утверждений:<ul class="zad"><li>некоторые 8 из этих отрезков имеют общую точку; </li><li>некоторые 8 из этих отрезков таковы, что никакие два из них не пересекаются.</li></ul>
Множество, состоящее из конечного числа точек плоскости, обладает следующим свойством: для любых двух его точек<i>A</i><nobr>и <i>B</i></nobr>существует такая<nobr>точка <i>С</i></nobr>этого множества, что треугольник<i>ABC</i>равносторонний. Сколько точек может содержать такое множество?
Докажите, что симметризация по Штейнеру выпуклого многоугольника является выпуклым многоугольником.
На плоскости дано несколько точек, попарные расстояния между которыми не превосходят 1. Докажите, что эти точки можно покрыть правильным треугольником со стороной$\sqrt{3}$.
На плоскости дано<i>n</i>$\ge$4 точек, причем никакие три из них не лежат на одной прямой. Докажите, что если для любых трех из них найдется четвертая (тоже из данных), с которой они образуют вершины параллелограмма, то<i>n</i>= 4.
На плоскости дано <i>n</i>точек и отмечены середины всех отрезков с концами в этих точках. Докажите, что различных отмеченных точек не менее 2<i>n</i>- 3.
На плоскости дано конечное число попарно непараллельных прямых, причем через точку пересечения любых двух из них проходит еще одна из данных прямых. Докажите, что все эти прямые проходят через одну точку.
а) Длины биссектрис треугольника не превосходят 1. Докажите, что его площадь не превосходит 1/$\sqrt{3}$. б) На сторонах<i>BC</i>,<i>CA</i>и<i>AB</i>треугольника<i>ABC</i>взяты точки<i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>и<i>C</i><sub>1</sub>. Докажите, что если длины отрезков<i>AA</i><sub>1</sub>,<i>BB</i><sub>1</sub>и<i>CC</i><sub>1</sub>не превосходят 1, то площадь треугольника<i>ABC</i>не превосходит1/$\sqrt{3}$.