Олимпиадные задачи по теме «Примеры и контрпримеры. Конструкции» для 10 класса - сложность 2 с решениями

Куб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?

При каких <i>n</i> можно оклеить в один слой поверхность клетчатого куба <i>n</i>×<i>n</i>×<i>n</i> бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?

Вася придумал новую шахматную фигуру "супер-слон". Один "супер-слон" (обозначим его <i>A</i>) бьёт другого (обозначим его <i>B</i>), если они стоят на одной диагонали, между ними нет фигур, и следующая по диагонали клетка за "супер-слоном" <i>B</i> свободна. Например, на рисунке фигура <i>a</i> бьёт фигуру <i>b</i>, но не бьёт ни одну из фигур <i>c, d, e, f</i> и <i>g</i>. <div align="center"><img src="/storage/problem-media/116871/problem_116871_img_2.gif"></div>Какое наибольшее количество "супер-слонов" можно поставить на шахматную доску так, чтобы каждый из них бился хотя бы одним другим?

Расставьте в кружках, расположенных в вершинах квадрата и в его центре, пять натуральных чисел так, чтобы каждые два числа, соединенные отрезком, имели общий делитель, больший 1, а любые два числа, не соединенные отрезком, были бы взаимно просты. <div align="center"><img src="/storage/problem-media/116868/problem_116868_img_2.gif"></div>

Верно ли, что в вершинах любого треугольника можно расставить положительные числа так, чтобы сумма чисел в концах каждой стороны треугольника равнялась длине этой стороны?

Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов:<div align="center"><img src="/storage/problem-media/116812/problem_116812_img_2.gif"></div> Могло ли такое быть?

Может ли произведение трёх трёхзначных чисел, для записи которых использовано девять различных цифр, оканчиваться четырьмя нулями?

Существует ли трапеция, в которой каждая диагональ разбивает её на два равнобедренных треугольника?

Изначально на столе лежат 111 кусков пластилина одинаковой массы. За одну операцию можно выбрать несколько групп (возможно, одну) по одинаковому количеству кусков и в каждой группе весь пластилин слепить в один кусок. За какое наименьшее количество операций можно получить ровно 11 кусков, каждые два из которых имеют различные массы?

В стране Далёкой провинция называется <i>крупной</i>, если в ней живёт более 7% жителей этой страны. Известно, что для каждой крупной провинции найдутся такие две провинции с меньшим населением , что их суммарное население больше, чем у этой крупной провинции. Какое наименьшее число провинций может быть в стране Далёкой?

Имеются 100 камней разного веса (одинаковых нет), к каждому приклеена этикетка с указанием его веса. Хулиган Гриша хочет переклеить этикетки так, чтобы общий вес любого набора с числом камней от 1 до 99 отличался от суммы весов, указанных на этикетках из этого набора. Всегда ли он может это сделать?

Для некоторых 2011 натуральных чисел выписали на доску все их 2011·1005 попарных сумм.

Могло ли оказаться, что ровно треть выписанных сумм делится на 3, и ещё ровно треть из них дают остаток 1 при делении на 3?

Фокусник выкладывает 36 карт в виде квадрата 6×6 (в 6 столбцов по 6 карт) и просит Зрителя мысленно выбрать карту и запомнить столбец, её содержащий. После этого Фокусник определённым образом собирает карты, снова выкладывает в виде квадрата 6×6 и просит Зрителя назвать номера столбцов, содержащих выбранную карту в первый и второй раз. После ответа Зрителя Фокусник безошибочно отгадывает карту. Как действовать Фокуснику, чтобы фокус гарантированно удался?

Какое наименьшее количество клеток требуется отметить на шахматной доске, чтобы каждая клетка доски (отмеченная или неотмеченная) граничила по стороне хотя бы с одной отмеченной клеткой?

Существует ли треугольник с вершинами в узлах сетки, у которого центры вписанной и описанной окружностей, точки пересечения высот и медиан также лежат в узлах сетки?

В клетках квадратной таблицы 5×5 расставлены числа 1 и –1. Известно, что строк с положительной суммой больше, чем с отрицательной.

Какое наибольшее количество столбцов этой таблицы может оказаться с отрицательной суммой?

В некотором государстве система авиалиний устроена таким образом, что каждый город соединен авиалиниями не более чем с тремя другими, и из каждого города можно попасть в любой другой, сделав не более одной пересадки. Какое наибольшее количество городов может быть в этом государстве?

  а) Есть кусок сыра. Разрешается выбрать любое положительное (возможно, нецелое) число  <i>a</i> ≠ 1,  и разрезать этот кусок в отношении  1 : <i>a</i>  по весу, затем разрезать в том же отношении любой из имеющихся кусков, и т. д. Можно ли действовать так, что после конечного числа разрезаний весь сыр удастся разложить на две кучки равного веса?

  б) Тот же вопрос, но выбирается положительное рациональное  <i>a</i> ≠ 1.

Можно ли все прямые на плоскости разбить на пары перпендикулярных прямых?

Бабе-Яге подарили большие песочные часы на 5 минут и маленькие – на 2 минуты. Зелье должно непрерывно кипеть ровно 8 минут. Когда оно закипело, весь песок в больших часах находился в нижней половине, а в маленьких – какая-то (неизвестная) часть песка в верхней, а остальная часть – в нижней половине. Помогите Бабе-Яге отмерить ровно 8 минут.

(Песок все время сыплется с постоянной скоростью. На переворачивание время не тратится.)

Внутри забора, представляющего собой замкнутую несамопересекающуюся ломаную, заперт тигр. На рисунке видна только часть забора (положение тигра показано крестиком). Нарисуйте, как мог бы выглядеть весь забор (забор может идти только по линиям сетки).<div align="center"><img src="/storage/problem-media/116368/problem_116368_img_2.gif"></div>

У барона Мюнхгаузена есть 50 гирь. Веса этих гирь – различные натуральные числа, не превосходящие 100, а суммарный вес гирь – чётное число. Барон утверждает, что нельзя часть этих гирь положить на одну чашу весов, а остальные – на другую чашу так, чтобы весы оказались в равновесии. Могут ли эти слова барона быть правдой?

Длина взрослого червяка 1 метр. Если червяк взрослый, его можно разрезать на две части в любом отношении длин. При этом получаются два новых червяка, которые сразу начинают расти со скоростью 1 метр в час каждый. Когда длина червяка достигает метра, он становится взрослым и прекращает расти. Можно ли из одного взрослого червяка получить 10 взрослых червяков быстрее чем за час?

Существуют ли такие натуральные числа <i>a, b, c, d</i>, что  <i>a</i>³ + <i>b</i>³ + <i>c</i>³ + <i>d</i>³ = 100<sup>100</sup> ?

У Винтика и у Шпунтика есть по три палочки суммарной длины 1 метр у каждого. И Винтик, и Шпунтик могут сложить из трёх своих палочек треугольник. Ночью в их дом прокрался Незнайка, взял по одной палочке у Винтика и у Шпунтика и поменял их местами. Наутро оказалось, что Винтик не может сложить из своих палочек треугольник. Можно ли гарантировать, что Шпунтик из своих — сможет?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка