Олимпиадные задачи по теме «Треугольник Паскаля и бином Ньютона» для 1-9 класса - сложность 1-2 с решениями

Сумма цифр натурального числа <i>n</i> равна 100. Может ли сумма цифр числа <i>n</i>³ равняться 1000000?

Докажите равенство   <img align="absmiddle" src="/storage/problem-media/109154/problem_109154_img_2.gif">

Доказать, что     <img src="/storage/problem-media/109151/problem_109151_img_2.gif"> <div align="center"><img src="/storage/problem-media/109151/problem_109151_img_3.gif"></div>

Сколькими способами можно прочитать в таблице слово

  а)  КРОНА,

  б)  КОРЕНЬ,

начиная с буквы "K" и двигаясь вправо или вниз? <div align="center"><img src="/storage/problem-media/103809/problem_103809_img_2.gif"></div>

Рассматривается числовой треугольник: <div align="center"><img src="/storage/problem-media/98176/problem_98176_img_2.gif"></div>(первая строчка задана, а каждый элемент остальных строчек вычисляется как разность двух элементов, которые стоят над ним). В 1993-й строчке – один элемент. Найдите его.

Докажите, что  2<sup><i>n</i></sup> > (1 – <i>x</i>)<sup><i>n</i></sup> + (1 + <i>x</i>)<sup><i>n</i></sup>  при целом  <i>n</i> ≥ 2  и  |<i>x</i>| < 1.

Каждое неотрицательное целое число представимо, причём единственным образом, в виде   <img align="absmiddle" src="/storage/problem-media/73613/problem_73613_img_2.gif">   где <i>x</i> и <i>y</i> – целые неотрицательные числа. Докажите это.

Вероятность того, что купленная лампочка будет работать, равна 0,95.

Сколько нужно купить лампочек, чтобы с вероятностью 0,99 среди них было не менее пяти работающих?

Вычислите производящие функции следующих последовательностей:

а)   <img align="absmiddle" src="/storage/problem-media/61497/problem_61497_img_2.gif">   б)   <img align="absmiddle" src="/storage/problem-media/61497/problem_61497_img_3.gif">

Используя разложение  (1 + <i>i</i>)<sup><i>n</i></sup>  по формуле бинома Ньютона, найдите:

  а)   <img align="absmiddle" src="/storage/problem-media/61126/problem_61126_img_2.gif">   б)   <img align="absmiddle" src="/storage/problem-media/61126/problem_61126_img_3.gif">

Докажите, что если  <i>a + b + c</i> = 0,  то   2(<i>a</i><sup>5</sup> + <i>b</i><sup>5</sup> + <i>c</i><sup>5</sup>) = 5<i>abc</i>(<i>a</i><sup>2</sup> + <i>b</i><sup>2</sup> + <i>c</i><sup>2</sup>).

При каких натуральных <i>n</i> число  (<img width="25" height="36" align="MIDDLE" border="0" src="/storage/problem-media/60871/problem_60871_img_2.gif"> + 1)<sup><i>n</i></sup> – (<img width="25" height="36" align="MIDDLE" border="0" src="/storage/problem-media/60871/problem_60871_img_2.gif"> – 1)<sup><i>n</i></sup>  будет целым?

<b>Малая теорема Ферма</b>. Пусть <i>p</i> – простое число и <i>p</i> не делит <i>a</i>. Тогда  <i>a</i><sup><i>p</i>–1</sup> ≡ 1 (mod <i>p</i>).

Докажите теорему Ферма, разлагая  (1 + 1 + ... + 1)<sup><i>p</i></sup>  посредством полиномиальной теоремы (см. задачу <a href="https://mirolimp.ru/tasks/160400">160400</a>).

Докажите, что если <i>p</i> – простое число, то   (<i>a</i> + <i>b</i>)<sup><i>p</i></sup> – <i>a<sup>p</sup> – b<sup>p</sup></i>   делится на  <i>p</i> при любых целых <i>a</i> и <i>b</i>.

Докажите, что если <i>p</i> – простое число и  1 ≤ <i>k ≤ p</i> – 1,  то  <img align="absmiddle" src="/storage/problem-media/60668/problem_60668_img_2.gif">  делится на <i>p</i>.

<div align="CENTER"> <table cellpadding="3"> <tr><td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER">1</td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </td> <td align="CENTER"> </...

Вычислите сумму:   <img align="absmiddle" src="/storage/problem-media/60582/problem_60582_img_2.gif">

Докажите равенство:   <img align="absmiddle" src="/storage/problem-media/60581/problem_60581_img_2.gif">

(Сумма, стоящая в левой части, может быть интерпретирована, как сумма элементов треугольника Паскаля, стоящих в одной диагонали.)

Докажите следующий вариант <i>формулы Бине</i>:   <img align="absmiddle" src="/storage/problem-media/60579/problem_60579_img_2.gif">

<div align="center"><img src="/storage/problem-media/60424/problem_60424_img_2.gif"></div>Здесь изображен фрагмент таблицы, которая называется<i>треугольником Лейбница</i>. Его свойства "аналогичны в смысле противоположности" свойствам треугольника Паскаля. Числа на границе треугольника обратны последовательным натуральным числам. Каждое число внутри равно сумме двух чисел, стоящих под ним. Найдите формулу, которая связывает числа из треугольников Паскаля и Лейбница.

Найдите <i>m</i> и <i>n</i> зная, что   <img align="absmiddle" src="/storage/problem-media/60419/problem_60419_img_2.gif">

Покажите, что любое натуральное число <i>n</i> может быть представлено в виде   <img align="absmiddle" src="/storage/problem-media/60417/problem_60417_img_2.gif">   где <i>x, y, z</i> – такие целые числа, что  0 ≤ <i>x < y < z</i>,  либо  0 = <i>x = y < z</i>.

В разложении  (<i>x + y</i>)<sup><i>n</i></sup>  по формуле бинома Ньютона второй член оказался равен 240, третий – 720, а четвёртый – 1080. Найдите <i>x, y</i> и <i>n</i>.

Докажите равенство   <img align="absmiddle" src="/storage/problem-media/60414/problem_60414_img_2.gif">

Докажите тождества:   а)  <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_2.gif">   б)  <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_3.gif">   в)  <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_4.gif">   г)  <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_5.gif">   д)  <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_6.gif">(Попробуйте доказать эти тождества тремя разными способами: пользуясь тем, что   <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_7.gif">   – это количест...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка