Олимпиадные задачи по теме «Планиметрия» для 5 класса - сложность 2 с решениями

Можно ли нарисовать 1006 различных 2012-угольников, у которых все вершины общие, но при этом ни у каких двух нет ни одной общей стороны?

Биссектрисы треугольника <i>ABC</i> пересекаются в точке <i>I</i>,  ∠<i>ABC</i> = 120°.  На продолжениях сторон <i>AB</i> и <i>CB</i> за точку <i>B</i> отмечены соответственно точки <i>P</i> и <i>Q</i> так, что  <i>AP = CQ = AC</i>.  Докажите, что угол <i>PIQ</i> – прямой.

Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол. <div align="center"><img src="/storage/problem-media/117002/problem_117002_img_2.gif"></div>

В треугольнике <i>ABC</i> на стороне <i>AB</i> выбрана точка <i>K</i> и проведены биссектриса <i>KE</i> треугольника <i>AKC</i> и высота <i>KH</i> треугольника <i>BKC</i>. Оказалось, что угол <i>EKH</i> – прямой. Найдите <i>BC</i>, если  <i>HC</i> = 5.

Внутри угла <i>AOB</i>, равного 120°, проведены лучи <i>OC</i> и <i>OD</i> так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла <i>AOC</i>, указав все возможные варианты.

Прямоугольник разделён двумя вертикальными и двумя горизонтальными отрезками на девять прямоугольных частей. Площади некоторых из получившихся частей указаны на рисунке. Найдите площадь верхней правой части. <div align="center"><img src="/storage/problem-media/116469/problem_116469_img_2.gif"></div>

На вертикальную ось надели несколько колес со спицами. Вид сверху изображен на левом рисунке.

<center><img align="absmiddle" src="/storage/problem-media/115380/problem_115380_img_2.gif"></center> После этого колеса повернули. Новый вид сверху изображен на рисунке справа. Могло ли колес быть:  а) три;  б) два?

Саша разрезал шахматную доску8<i>× </i>8по границам клеток на30прямоугольников так, чтобы равные прямоугольники не соприкасались даже углами (см. рис.). Попытайтесь улучшить его достижение, разрезав доску на большее число прямоугольников с соблюдением того же условия.

<center><i> <img align="absmiddle" src="/storage/problem-media/115377/problem_115377_img_2.gif"> </i></center>

Определите, с какой стороны расположен руль у изображенного на рисунке автомобиля. <center><img src="/storage/problem-media/110758/problem_110758_img_2.gif"></center>

Разделите круг тремя прямолинейными разрезами на: а) 4 части; б) 5 частей; в) 6 частей; г) 7 частей.

В Совершенном городе шесть площадей. Каждая площадь соединена прямыми улицами ровно с тремя другими площадями. Никакие две улицы в городе не пересекаются. Из трёх улиц, отходящих от каждой площади, одна проходит внутри угла, образованного двумя другими. Начертите возможный план такого города.

Зачеркните все 13 точек на рисунке пятью отрезками, не отрывая карандаша от бумаги и не проводя никакую линию дважды. <img src="/storage/problem-media/103851/problem_103851_img_2.gif">

Отметьте на плоскости 6 точек так, чтобы от каждой на расстоянии 1 находилось ровно три точки.

Квадратный лист бумаги разрезали на шесть кусков в форме выпуклых многоугольников; пять кусков затерялись, остался один кусок в форме правильного восьмиугольника (см. рисунок). Можно ли по одному этому восьмиугольнику восстановить исходный квадрат?<div align="center"><img src="/storage/problem-media/88235/problem_88235_img_2.gif"></div>

Сто сидений карусели расположены по кругу через равные промежутки. Каждое покрашено в жёлтый, синий или красный цвет. Сиденья одного и того же цвета расположены подряд и пронумерованы 1, 2, 3, ... по часовой стрелке. Синее сиденье № 7 противоположно красному № 3, а жёлтое № 7 — красному № 23. Найдите, сколько на карусели жёлтых сидений, сколько синих и сколько красных.

Сложите из трёх одинаковых клетчатых фигур без оси симметрии фигуру с осью симметрии.

Равносторонний треугольник со стороной 8 разделили на равносторонние треугольнички со стороной 1 (см. рис.). Какое наименьшее количество треугольничков надо закрасить, чтобы все точки пересечения линий (в том числе и те, что по краям) были вершинами хотя бы одного закрашенного треугольничка? <div align="center"><img src="/storage/problem-media/65598/problem_65598_img_2.png"></div>

Рамка для трёх квадратных фотографий имеет везде одинаковую ширину (см. рисунок). Периметр одного отверстия равен 60 см, периметр всей рамки равен 180 см. Чему равна ширина рамки?<div align="center"><img src="/storage/problem-media/64935/problem_64935_img_2.gif"></div>

Из четырёх фотографий можно составить три различных прямоугольника (см. рис.). Периметр какого-то одного из них равен 56 см. Найдите периметры остальных двух прямоугольников, если периметр фотографии равен 20 см.<div align="center"><img src="/storage/problem-media/64501/problem_64501_img_2.gif">             <img src="/storage/problem-media/64501/problem_64501_img_3.gif">             <img src="/storage/problem-media/64501/problem_64501_img_4.gif"></div>

В круге отметили точку. Разрежьте круг на  а) три;  б) две части так, чтобы из них можно было составить новый круг, у которого отмеченная точка будет в центре.

Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка