Олимпиадные задачи по теме «Алгебра и арифметика» - сложность 1 с решениями

Известно, что  tg <i>A</i> + tg <i>B</i> = 2  и  ctg <i>A</i> + ctg <i>B</i> = 3.  Найдите  tg (<i>A + B</i>).

На доске записан ряд из чисел и звёздочек: 5, *, *, *, *, *, *, 8. Замените звёздочки числами так, чтобы сумма каждых трёх чисел, стоящих подряд, равнялась 20.

На карточках записаны числа 415, 43, 7, 8, 74, 3 (см. рисунок). Расположите карточки в ряд так, чтобы получившееся десятизначное число было наименьшим из возможных. <div align="center"><img src="/storage/problem-media/116858/problem_116858_img_2.gif"></div>

В формулу линейной функции  <i>y = kx + b</i>  вместо букв <i>k</i> и <i>b</i> впишите числа от 1 до 20 (каждое по одному разу) так, чтобы получилось 10 функций, графики которых проходят через одну и ту же точку.

Сравните числа:  <i>А</i> = 2011·20122012·201320132013  и  <i>В</i> = 2013·20112011·201220122012.

Купец купил в Твери несколько мешков соли и продал их в Москве с прибылью в 100 рублей. На все вырученные деньги он снова купил в Твери соль (по тверской цене) и продал в Москве (по московской цене). На этот раз прибыль составила 120 рублей. Сколько денег он потратил на первую покупку?

На некоторые клетки квадратной доски 4×4 выкладывают стопкой золотые монеты, а на остальные клетки – серебряные. Можно ли положить монеты так, чтобы в каждом квадрате 3×3 серебряных монет было больше, чем золотых, а на всей доске золотых было больше, чем серебряных?

В записи   ¼  ¼  ¼  ¼   расставьте знаки действий и, если нужно, скобки так, чтобы значение получившегося выражения равнялось 2.

Длина крокодила от головы до хвоста в три раза меньше десяти кэн, а от хвоста до головы равна трем кэн и двум сяку. Известно, что одна сяку равна 30 см. Найдите длину крокодила в метрах. (<i>Кэн и сяку – японские единицы длины</i>.)

В каком году установлен памятник Юрию Долгорукому, если в записи этого числа последняя цифра на единицу меньше предыдущей и при зачеркивании первой и последней цифры получается наибольшее двузначное число с суммой цифр 14?

Петя ехал из Петрова в Николаево, а Коля – наоборот. Они встретились, когда Петя проехал 10 км и еще четверть оставшегося ему до Николаева пути, а Коля проехал 20 км и треть оставшегося ему до Петрова пути. Какое расстояние между Петрово и Николаево?

На рисунке изображен график функции  <i>у = kx + b</i> .  Сравните |<i>k</i>| и |<i>b</i>|. <div align="center"><img src="/storage/problem-media/116734/problem_116734_img_2.gif"></div>

Существуют ли два одночлена, произведение которых равно –12<i>а</i><sup>4</sup><i>b</i>², а сумма является одночленом с коэффициентом 1?

Города <i>A</i>, <i>B</i> и <i>C</i> вместе с соединяющими их прямыми дорогами образуют треугольник. Известно, что прямой путь из <i>A</i> в <i>B</i> на 200 км короче объезда через <i>C</i>, а прямой путь из <i>A</i> в <i>C</i> на 300 км короче объезда через <i>B</i>. Найдите расстояние между городами <i>B</i> и C.

Найдите все пары  (<i>p, q</i>)  простых чисел, разность пятых степеней которых также является простым числом.

Торт упакован в коробку с квадратным основанием. Высота коробки вдвое меньше стороны этого квадрата. Ленточкой длины 156 см можно перевязать коробку и сделать бантик сверху (как на рисунке слева). А чтобы перевязать её с точно таким же бантиком сбоку (как на рисунке справа), нужна ленточка длины 178 см. Найдите размеры коробки. <div align="center"><img src="/storage/problem-media/116606/problem_116606_img_2.gif"></div>

Пазл Пете понравился, он решил его склеить и повесить на стену. За одну минуту он склеивал вместе два куска (начальных или ранее склеенных). В результате весь пазл соединился в одну цельную картину за 2 часа. За какое время собралась бы картина, если бы Петя склеивал вместе за минуту не по два, а по три куска?

Докажите, что для любого натурального <i>n</i> выполнено неравенство  (<i>n</i> – 1)<sup><i>n</i>+1</sup>(<i>n</i> + 1)<sup><i>n</i>–1</sup> < <i>n</i><sup>2<i>n</i></sup>.

Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?

Известно, что <i>x, y</i> и <i>z</i> – целые числа и  <i>xy + yz + zx</i> = 1.  Докажите, что число  (1 + <i>x</i>²)(1 + <i>y</i>²)(1 + <i>z</i>²)  является квадратом натурального числа.

Найдите наименьшее натуральное значение <i>n</i>, при котором число <i>n</i>! делится на 990.

Для некоторых чисел <i>а, b, c</i> и <i>d</i>, отличных от нуля, выполняется равенство:   <img align="absmiddle" src="/storage/problem-media/116531/problem_116531_img_2.gif"> .   Найдите знак числа <i>ас</i>.

Решите уравнение:   (<i>x</i> + 2010)(<i>x</i> + 2011)(<i>x</i> + 2012) = (<i>x</i> + 2011)(<i>x</i> + 2012)(<i>x</i> + 2013).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка