Олимпиадные задачи по теме «Системы счисления» для 6 класса - сложность 2 с решениями

На рисунке приведены три примера показаний исправных электронных часов. Сколько палочек могут перестать работать, чтобы время всегда можно было определить однозначно? <div align="center"><img src="/storage/problem-media/117005/problem_117005_img_2.gif"></div>

Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.

Астролог считает, что 2013 год <i>счастливый</i>, потому что 2013 нацело делится на сумму  20 + 13.

Будет ли когда-нибудь два счастливых года подряд?

Вот ребус довольно простой:

ЭХ вчетверо больше, чем ОЙ.

АЙ вчетверо больше, чем ОХ.

Найди сумму всех четырёх.

Из четырёх цифр, отличных от нуля, составлены два четырёхзначных числа: самое большое и самое маленькое из возможных. Сумма получившихся чисел оказалась равна 11990. Какие числа могли быть составлены?

Боря и Миша едут в поезде и считают столбы за окном: "один, два, ...". Боря не выговаривает букву "Р", поэтому при счете он пропускает числа, в названии которых есть буква "Р", а называет сразу следующее число без буквы "Р". Миша не выговаривает букву "Ш", поэтому пропускает числа с буквой "Ш". У Бори последний столб получил номер "сто". Какой номер этот столб получил у Миши?

Какие цифры могут стоять на месте букв в примере  <i>AB·C = DE</i>,  если различными буквами обозначены различные цифры и слева направо цифры записаны в порядке возрастания?

Шестизначное табло в автомобиле показывает, сколько километров автомобиль проехал с момента покупки. Сейчас на нем высвечивается число, в котором есть четыре "семёрки". Может ли оказаться так, что еще через900 км на табло высветится число, в котором ровно одна "семерка"?

Даны две последовательности: 2, 4, 8, 16, 14, 10, 2 и 3, 6, 12. В каждой из них каждое число получено из предыдущего по одному и тому же закону. а) Найдите этот закон.

б) Найдите все натуральные числа, переходящие сами в себя (по этому закону).

в) Докажите, что число 2<sup>1991</sup> после нескольких переходов станет однозначным.

Миша загадал число не меньше 1 и не больше 1000. Васе разрешено задавать только такие вопросы, на которые Миша может ответить «да» или «нет» (Миша всегда говорит правду). Может ли Вася за 10 вопросов определить загаданное число?

Шестизначное число начинается с цифры 5. Верно ли, что к нему всегда можно приписать справа шесть цифр так, чтобы получился полный квадрат?

И сказал Кощей Ивану-Царевичу: «Жить тебе до завтра. Утром явишься пред мои очи, задумаю я три цифры —<var>x</var>,<var>y</var>,<var>z</var>. Назовешь ты мне три числа —<var>a</var>,<var>b</var>,<var>c</var>. Выслушаю я тебя и скажу, чему равно<var>ax</var>+<var>by</var>+<var>cz</var>. Не отгадаешь цифры<var>x</var>,<var>y</var>,<var>z</var>— голову с плеч долой». Запечалился Иван-Царевич, пошёл думу думать. Как ему помочь?

Написано 1992-значное число. Каждое двузначное число, образованное соседними цифрами, делится на 17 или на 23. Последняя цифра числа 1. Какова первая?

Назовём автобусный билет <i>счастливым</i>, если сумма цифр его номера делится на 7. Могут ли два билета подряд быть счастливыми?

Назовём натуральное число $n$<i>интересным</i>, если $n$ и $n+2023$ – палиндромы, то есть числа, одинаково читающееся слева направо и справа налево. Найдите наименьшее и наибольшее интересные числа.

На доске написаны две суммы: 1 + 22 + 333 + 4444 + 55555 + 666666 +7777777 + 88888888 + 999999999

9 + 98 + 987 + 9876 + 98765 + 987654 + 9876543 + 98765432 + 987654321

Определите, какая из них больше (или они равны).

Вася задумал двузначное число и сообщил Пете произведение цифр в записи этого числа, а Саше – сумму этих цифр. Между мальчиками состоялся такой диалог:

  Петя: "Я угадаю задуманное число с трёх попыток, но двух мне может не хватить".

  Саша: "Если так, то мне для этого хватит четырёх попыток, но трёх может не хватить".

Какое число было сообщено Саше?

У Незнайки есть пять карточек с цифрами: 1, 2, 3, 4 и 5. Помогите ему составить из этих карточек два числа – трёхзначное и двузначное – так, чтобы первое число делилось на второе.

Юра записал четырёхзначное число. Лёня прибавил к первой цифре этого числа 1, ко второй 2, к третьей 3 и к четвёртой 4, а потом перемножил полученные суммы. У Лёни получилось 234. Какое число могло быть записано Юрой?

Может ли в равенстве  <sup>1</sup>/<sub><i>x</i></sub> = <sup>1</sup>/<sub><i>y</i></sub> + <sup>1</sup>/<sub><i>z</i></sub>  одно из чисел <i>x, y</i> или <i>z</i> быть однозначным, другое – двузначным, третье – трёхзначным?

Сумма трёх различных наименьших делителей некоторого числа <i>A</i> равна 8. На сколько нулей может оканчиваться число <i>A</i>?

В сумме  + 1 + 3 + 9 + 27 + 81 + 243 + 729  можно вычеркивать любые слагаемые и изменять некоторые знаки перед оставшимися числами с "+" на "–". Маша хочет таким способом сначала получить выражение, значение которого равно 1, затем, начав сначала, получить выражение, значение которого равно 2, затем (снова начав сначала) получить 3, и так далее. До какого наибольшего целого числа ей удастся это сделать без пропусков?

Мальвина попросила Буратино выписать все девятизначные числа, составленные из различных цифр. Буратино забыл, как пишется цифра 7, поэтому записал только те девятизначные числа, в которых этой цифры нет. Затем Мальвина предложила ему вычеркнуть из каждого числа по шесть цифр так, чтобы оставшееся трёхзначное число было простым. Буратино тут же заявил, что это возможно не для всех записанных чисел. Прав ли он?

а) У одного человека был подвал, освещавшийся тремя электрическими лампочками. Выключатели этих лампочек находились вне подвала, так что включив любой из выключателей, хозяин должен был спуститься в подвал, чтобы увидеть, какая именно лампочка зажглась. Однажды он придумал способ, как определить для каждого выключателя, какую именно лампочку он включает, сходив в подвал ровно один раз. Какой это способ? б) Сколько лампочек и выключателей можно идентифицировать друг с другом, если разрешается 2 раза спуститься в подвал?

Бывают ли натуральные числа, произведение цифр которых равно 1986?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка