Олимпиадные задачи по теме «Рациональные функции» - сложность 2 с решениями

Известно, что числа <i>а, b, c</i> и <i>d</i> – целые и  <img align="absmiddle" src="/storage/problem-media/116922/problem_116922_img_2.gif">.  Может ли выполняться равенство  <i>аbcd</i> = 2012?

Найдите все такие числа <i>a</i>, что для любого натурального <i>n</i> число  <i>an</i>(<i>n</i> + 2)(<i>n</i> + 4)  будет целым.

Прямоугольник разделён двумя вертикальными и двумя горизонтальными отрезками на девять прямоугольных частей. Площади некоторых из получившихся частей указаны на рисунке. Найдите площадь верхней правой части. <div align="center"><img src="/storage/problem-media/116469/problem_116469_img_2.gif"></div>

Найдите значение выражения   <img align="absmiddle" src="/storage/problem-media/116454/problem_116454_img_2.gif"> ,   если  <i>а</i> = <img align="middle" src="/storage/problem-media/116454/problem_116454_img_3.gif">,   <i>b</i> = <img align="middle" src="/storage/problem-media/116454/problem_116454_img_4.gif">.

Известно, что выражения  4<i>k</i> + 5  и  9<i>k</i> + 4  при некоторых натуральных значениях <i>k</i> одновременно являются точными квадратами. Какие значения может принимать выражение  7<i>k</i> + 4  при тех же значениях <i>k</i>?

На бумажке записаны 1 и некоторое нецелое число <i>x</i>. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке

число <i>x</i>²?

На бумажке записаны три положительных числа <i>x, y</i> и 1. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке

 a) число <i>x</i>²?   б) число <i>xy</i>?

Докажите тождество <center><i> <img src="/storage/problem-media/109569/problem_109569_img_2.gif">+ <img src="/storage/problem-media/109569/problem_109569_img_3.gif">+..+ <img src="/storage/problem-media/109569/problem_109569_img_4.gif">=

<img src="/storage/problem-media/109569/problem_109569_img_5.gif">+ <img src="/storage/problem-media/109569/problem_109569_img_6.gif">+..+ <img src="/storage/problem-media/109569/problem_109569_img_7.gif">.

</i></center>

Доказать, что из равенства   <img align="absmiddle" src="/storage/problem-media/108988/problem_108988_img_2.gif">   вытекает равенство   <img align="absmiddle" src="/storage/problem-media/108988/problem_108988_img_3.gif">   если <i>k</i> нечётно.

Для положительных чисел <i>x, y, z</i> выполнено равенство  <sup><i>x</i>²</sup>/<sub><i>y</i></sub> + <sup><i>y</i>²</sup>/<sub><i>z</i></sub> + <sup><i>z</i>²</sup>/<sub><i>x</i></sub> = <sup><i>x</i>²</sup>/<sub><i>z</i></sub> + <sup><i>y</i>²</sup>/<sub><i>x</i></sub> + <sup><i>z</i>²</sup>/<sub><i>y</i></sub>.  Докажите, что хотя бы два из чисел <i>x, y, z</i> равны между собой.

Известно, что при любом целом  <i>K</i> ≠ 27  число  <i>a – K</i><sup>1964</sup>  делится без остатка на  27 – <i>K</i>. Найти <i>a</i>.

Известно, что при любом целом  <i>K</i> ≠ 27  число  <i>a – K</i>³  делится на  27 – <i>K</i>. Найти <i>a</i>.

Что больше   <img width="252" height="49" align="MIDDLE" border="0" src="/storage/problem-media/77920/problem_77920_img_2.gif">   или <img width="252" height="49" align="MIDDLE" border="0" src="/storage/problem-media/77920/problem_77920_img_3.gif">?

Докажите, что если три числа <i>a, b, c</i> связаны соотношением  <sup>1</sup>/<sub><i>a</i></sub> + <sup>1</sup>/<sub><i>b</i></sub> + <sup>1</sup>/<sub><i>c</i></sub> = <sup>1</sup>/<sub><i>a+b+c</i></sub>,  то какие-либо два из этих чисел в сумме дают 0.

Вычислите произведение   <img align="absmiddle" src="/storage/problem-media/60313/problem_60313_img_2.gif">

Сломанный калькулятор выполняет только одну операцию "звездочка":  <i>a</i>&star;<i>b</i> = 1 – <i>a</i> : <i>b</i>.

Докажите, что с помощью этого калькулятора все же возможно выполнить любое из четырёх арифметических действий.

Найдите значение произведения (1-1/4)(1-1/9)...(1-1/100) (числа в знаменателях равны квадратам натуральных чисел от 2 до 10).

Вычислительная машина умеет выполнять только одну операцию:<b><i>a*b=1-a/b</i></b>. Как выполнить с помощью этой машины все четыре арифметических действия?

Доказать, что  (1 + &frac13;)(1 + &frac18;)(1 + <sup>1</sup>/<sub>15</sub>)...(1 + <sup>1</sup>/<sub><i>n</i>²+2<i>n</i></sub>) < 2  при любом натуральном <i>n</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка