Олимпиадные задачи по математике для 8-11 класса - сложность 1 с решениями
Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?
Дима увидел в музее странные часы (см. рисунок). Они отличаются от обычных часов тем, что на их циферблате нет цифр и вообще непонятно, где у часов верх; да ещё секундная, минутная и часовая стрелки имеют одинаковую длину. Какое время показывали часы?
(Стрелки А и Б на рисунке смотрят ровно на часовые отметки, а стрелка В чуть-чуть не дошла до часовой отметки.) <div align="center"><img src="/storage/problem-media/116964/problem_116964_img_2.gif"></div>
Известно, что tg <i>A</i> + tg <i>B</i> = 2 и ctg <i>A</i> + ctg <i>B</i> = 3. Найдите tg (<i>A + B</i>).
В формулу линейной функции <i>y = kx + b</i> вместо букв <i>k</i> и <i>b</i> впишите числа от 1 до 20 (каждое по одному разу) так, чтобы получилось 10 функций, графики которых проходят через одну и ту же точку.
Сравните числа: <i>А</i> = 2011·20122012·201320132013 и <i>В</i> = 2013·20112011·201220122012.
Купец купил в Твери несколько мешков соли и продал их в Москве с прибылью в 100 рублей. На все вырученные деньги он снова купил в Твери соль (по тверской цене) и продал в Москве (по московской цене). На этот раз прибыль составила 120 рублей. Сколько денег он потратил на первую покупку?
На некоторые клетки квадратной доски 4×4 выкладывают стопкой золотые монеты, а на остальные клетки – серебряные. Можно ли положить монеты так, чтобы в каждом квадрате 3×3 серебряных монет было больше, чем золотых, а на всей доске золотых было больше, чем серебряных?
Петя ехал из Петрова в Николаево, а Коля – наоборот. Они встретились, когда Петя проехал 10 км и еще четверть оставшегося ему до Николаева пути, а Коля проехал 20 км и треть оставшегося ему до Петрова пути. Какое расстояние между Петрово и Николаево?
На рисунке изображен график функции <i>у = kx + b</i> . Сравните |<i>k</i>| и |<i>b</i>|. <div align="center"><img src="/storage/problem-media/116734/problem_116734_img_2.gif"></div>
У двух равнобедренных треугольников равны основания и радиусы описанных окружностей. Обязательно ли эти треугольники равны?
Существуют ли два одночлена, произведение которых равно –12<i>а</i><sup>4</sup><i>b</i>², а сумма является одночленом с коэффициентом 1?
Найдите все пары (<i>p, q</i>) простых чисел, разность пятых степеней которых также является простым числом.
В трапеции <i>ABCD</i> (<i>AD || BC</i>) из точки <i>Е</i> – середины <i>CD</i> провели перпендикуляр <i>EF</i> к прямой <i>AB</i>. Найдите площадь трапеции, если <i>АВ</i> = 5, <i>EF</i> = 4.
Докажите, что для любого натурального <i>n</i> выполнено неравенство (<i>n</i> – 1)<sup><i>n</i>+1</sup>(<i>n</i> + 1)<sup><i>n</i>–1</sup> < <i>n</i><sup>2<i>n</i></sup>.
Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.
Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?
Дан равнобедренный треугольник <i>ABC</i> (<i>AB = AC</i>). На меньшей дуге <i>AB</i> описанной около него окружности взята точка <i>D</i>. На продолжении отрезка <i>AD</i> за точку <i>D</i> выбрана точка <i>E</i> так, что точки <i>A</i> и <i>E</i> лежат в одной полуплоскости относительно <i>BC</i>. Описанная окружность треугольника <i>BDE</i> пересекает сторону <i>AB</i> в точке <i>F</i>. Докажите, что прямые <i>EF</i> и <i>BC</i> параллельны.
Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?
Известно, что <i>x, y</i> и <i>z</i> – целые числа и <i>xy + yz + zx</i> = 1. Докажите, что число (1 + <i>x</i>²)(1 + <i>y</i>²)(1 + <i>z</i>²) является квадратом натурального числа.
Найдите наименьшее натуральное значение <i>n</i>, при котором число <i>n</i>! делится на 990.
Для некоторых чисел <i>а, b, c</i> и <i>d</i>, отличных от нуля, выполняется равенство: <img align="absmiddle" src="/storage/problem-media/116531/problem_116531_img_2.gif"> . Найдите знак числа <i>ас</i>.
Можно ли начертить два треугольника так, чтобы образовался девятиугольник?
В треугольнике <i>АВС</i> проведена биссектриса <i>BD</i>. Докажите, что <i>АВ</i> > <i>AD</i>.
Решите уравнение: (<i>x</i> + 2010)(<i>x</i> + 2011)(<i>x</i> + 2012) = (<i>x</i> + 2011)(<i>x</i> + 2012)(<i>x</i> + 2013).
В пространстве заданы три луча: <i>DA</i>, <i>DB</i> и <i>DC</i>, имеющие общее начало <i>D</i>, причём ∠<i>ADB</i> = ∠<i>ADC</i> = ∠<i>BDC</i> = 90°. Сфера пересекает луч <i>DA</i> в точках <i>A</i><sub>1</sub> и <i>A</i><sub>2</sub>, луч <i>DB</i> – в точках <i>B</i><sub>1</sub> и <i>B</i><sub>2</sub>, луч <i>DC</i> – в точках <i>C</i><sub>1</sub> и <i>C</i><sub>2</sub>. Найдите площадь треугольника <i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</s...