Олимпиадные задачи по математике для 11 класса - сложность 3-4 с решениями
Существуют ли 2013 таких различных натуральных чисел, что сумма каждых двух из них делится на их разность?
В треугольнике <i>ABC</i> угол <i>B</i> равен 60°. Точка <i>D</i> внутри треугольника такова, что ∠<i>ADB</i> = ∠<i>ADC</i> = ∠<i>BDC</i>.
Найдите наименьшее значение площади треугольника <i>ABC</i>, если <i>BD = a</i>.
В треугольнике <i>АВС</i> проведена биссектриса <i>АА</i><sub>1</sub>. Докажите, что серединный перпендикуляр к <i>АА</i><sub>1</sub>, перпендикуляр к <i>ВС</i>, проходящий через точку <i>А</i><sub>1</sub>, и прямая <i>АО</i> (<i>О</i> – центр описанной окружности) пересекаются в одной точке.
В футбольном чемпионате участвуют 18 команд. На сегодняшний день проведено 8 туров (в каждом туре все команды разбиваются на пары и в каждой паре команды играют друг с другом, причём пары не повторяются). Верно ли, что найдутся три команды, которые не сыграли ни одного матча между собой?
В треугольнике <i>ABC</i>: ∠<i>B</i> = 22,5°, ∠<i>C</i> = 45°. Докажите, что высота <i>АН</i>, медиана <i>BM</i> и биссектриса <i>CL</i> пересекаются в одной точке.
В кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников. Найдите длину отрезка, по которому эти сечения пересекаются.
Клетчатая полоска 1×1000000 разбита на 100 сегментов. В каждой клетке записано целое число, причём в клетках, лежащих в одном сегменте, числа совпадают. В каждую клетку поставили по фишке. Затем сделали такую операцию: все фишки одновременно передвинули, каждую – на то количество клеток вправо, которое указано в её клетке (если число отрицательно, то фишка двигается влево); при этом оказалось, что в каждую клетку снова попало по фишке. Эту операцию повторяют много раз. Для каждой фишки первого сегмента подсчитали, через сколько операций она впервые снова окажется в этом сегменте. Докажите, что среди полученных чисел не более 100 различных.
а) Внутри сферы находится некоторая точка <i>A</i>. Через <i>A</i> провели три попарно перпендикулярные прямые, которые пересекли сферу в шести точках. Докажите, что центр масс этих точек не зависит от выбора такой тройки прямых.б) Внутри сферы находится икосаэдр, его центр <i>A</i> не обязательно совпадает с центром сферы. Лучи, выпущенные из <i>A</i> в вершины икосаэдра, высекают 12 точек на сфере. Икосаэдр повернули так, что его центр остался на месте. Теперь лучи высекают 12 новых точек.
Докажите, что их центр масс совпадает с центром масс старых 12 точек.
На сторонах <i>AB</i> и <i>BC</i> треугольника <i>ABC</i> выбраны соответственно точки <i>C</i><sub>1</sub> и <i>A</i><sub>1</sub>, отличные от вершин. Пусть <i>K</i> – середина <i>A</i><sub>1</sub><i>C</i><sub>1</sub>, а <i>I</i> – центр окружности, вписанной в треугольник <i>ABC</i>. Оказалось, что четырёхугольник <i>A</i><sub>1</sub><i>BC</i><sub>1</sub><i>I</i> вписанный. Докажите, что угол <i>AKC</i> тупой.
Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 1001 орех по трём коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число <i>N</i> от 1 до 1001. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую четвёртую коробочку и предъявить Чичикову одну или несколько коробочек, где в сумме ровно <i>N</i> орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв?
Дана бесконечная последовательность чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... Известно, что для любого номера <i>k</i> можно указать такое натуральное число <i>t</i>, что
<i>a<sub>k</sub> = a<sub>k+t</sub> = a</i><sub><i>k</i>+2<i>t</i></sub> = ... Обязательно ли тогда эта последовательность периодическая, то есть существует ли такое натуральное <i>T</i>, что <i>a<sub>k</sub> = a<sub>k+T</sub></i> при любом натуральном <i>k</i>?
Из 239 неотличимых на вид монет две – одинаковые фальшивые, а остальные – одинаковые настоящие, отличающиеся от фальшивых по весу. Как за три взвешивания на чашечных весах без гирь выяснить, какая монета тяжелее – фальшивая или настоящая? Сами фальшивые монеты находить не нужно.
Пусть <i>C</i>(<i>n</i>) – количество различных простых делителей числа <i>n</i>.
а) Конечно или бесконечно число таких пар натуральных чисел (<i>a, b</i>), что <i>a ≠ b</i> и <i>C</i>(<i>a + b</i>) = <i>C</i>(<i>a</i>) + <i>C</i>(<i>b</i>)?
б) А если при этом дополнительно требуется, чтобы <i>C</i>(<i>a + b</i>) > 1000?
В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовало хотя бы четверо школьников этого класса.
Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в <sup>1</sup>/<sub>17</sub> всех экскурсий.
Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади.
Равнобедренный треугольник с углом 120° сложен ровно из трёх слоёв бумаги. Треугольник развернули – и получился прямоугольник. Нарисуйте такой прямоугольник и покажите пунктиром линии сгиба.
Для натурального <i>n</i> обозначим <i>S<sub>n</sub></i> = 1! + 2! + ... + <i>n</i>!. Докажите, что при некотором <i>n</i> у числа <i>S<sub>n</sub></i> есть простой делитель, больший 10<sup>2012</sup>.
На окружности отмечено 2<i>n</i> + 1 точек, делящих её на равные дуги (<i>n</i> ≥ 2). Двое по очереди стирают по одной точке. Если после хода игрока все треугольники с вершинами в ещё отмеченных точках – тупоугольные, он выигрывает, и игра заканчивается. Кто выиграет при правильной игре: начинающий игру или его противник?
Точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> выбраны на сторонах <i>BC, CA</i> и <i>AB</i> треугольника <i>ABC</i> соответственно. Оказалось, что <i>AB</i><sub>1</sub> – <i>AC</i><sub>1</sub> = <i>CA</i><sub>1</sub> – <i>CB</i><sub>1</sub> = <i>BC</i><sub>1</sub> – <i>BA</i><sub>1</sub>. Пусть <i>O<sub>A</sub></i>, <i>O<sub>B</sub></i> и <i>O<sub>C</sub></i> – центры описанных окружностей треугольников <i>AB</i><sub>1</sub&...
Даны многочлен <i>P</i>(<i>x</i>) и такие числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, <i>b</i><sub>3</sub>, что <i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub> ≠ 0. Оказалось, что <i>P</i>(<i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>) + <i>P</i>(<i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>) = <i>P</i>(<i>a</i><sub>3<...
Дана пирамида <i>SA</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>, основание которой – выпуклый многоугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>. Для каждого <i>i</i> = 1, 2, ..., <i>n</i> в плоскости основания построили треугольник <i>X<sub>i</sub>A<sub>i</sub>A</i><sub><i>i</i>+1</sub>, равный треугольнику <i>SA<sub>i</sub>A</i><sub><i>i</i>+1</sub> и лежащий по ту же сторону от прямой <i>A<sub>i</sub>A</i><sub><i>i</i>+1</sub>...
Клетчатая плоскость раскрашена в шахматном порядке в чёрный и белый цвета. Затем белые клетки снова раскрашены в красный и синий цвета так, чтобы клетки, соседние по углу, были разноцветными. Пусть <i>l</i> – прямая, не параллельная сторонам клеток. Для каждого отрезка <i>I</i>, параллельного <i>l</i>, посчитаем разность сумм длин его красных и синих участков. Докажите, что существует число <i>C</i> (зависящее только от прямой <i>l</i>) такое, что все полученные разности не превосходят <i>C</i>.
Точка <i>E</i> – середина отрезка, соединяющего ортоцентр неравнобедренного остроугольного треугольника <i>ABC</i> с его вершиной <i>A</i>. Вписанная окружность этого треугольника касается сторон <i>AB</i> и <i>AC</i> в точках <i>C'</i> и <i>B'</i> соответственно. Докажите, что точка <i>F</i>, симметричная точке <i>E</i> относительно прямой <i>B'C'</i>, лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника <i>ABC</i>.
На координатной плоскости нарисовано <i>n</i> парабол, являющихся графиками квадратных трёхчленов; никакие две из них не касаются. Они делят плоскость на несколько областей, одна из которых расположена над всеми параболами. Докажите, что у границы этой области не более 2(<i>n</i> – 1) углов (то есть точек пересечения пары парабол).
Существуют ли такие натуральные числа <i>a, b, c</i>, большие 10<sup>10</sup>, что их произведение делится на любое из них, увеличенное на 2012?